diff options
Diffstat (limited to 'accel/tcg/translate-all.c')
-rw-r--r-- | accel/tcg/translate-all.c | 2227 |
1 files changed, 2227 insertions, 0 deletions
diff --git a/accel/tcg/translate-all.c b/accel/tcg/translate-all.c new file mode 100644 index 0000000000..f6ad46b613 --- /dev/null +++ b/accel/tcg/translate-all.c @@ -0,0 +1,2227 @@ +/* + * Host code generation + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#ifdef _WIN32 +#include <windows.h> +#endif +#include "qemu/osdep.h" + + +#include "qemu-common.h" +#define NO_CPU_IO_DEFS +#include "cpu.h" +#include "trace.h" +#include "disas/disas.h" +#include "exec/exec-all.h" +#include "tcg.h" +#if defined(CONFIG_USER_ONLY) +#include "qemu.h" +#include "exec/exec-all.h" +#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) +#include <sys/param.h> +#if __FreeBSD_version >= 700104 +#define HAVE_KINFO_GETVMMAP +#define sigqueue sigqueue_freebsd /* avoid redefinition */ +#include <sys/proc.h> +#include <machine/profile.h> +#define _KERNEL +#include <sys/user.h> +#undef _KERNEL +#undef sigqueue +#include <libutil.h> +#endif +#endif +#else +#include "exec/address-spaces.h" +#endif + +#include "exec/cputlb.h" +#include "exec/tb-hash.h" +#include "translate-all.h" +#include "qemu/bitmap.h" +#include "qemu/timer.h" +#include "qemu/main-loop.h" +#include "exec/log.h" +#include "sysemu/cpus.h" + +/* #define DEBUG_TB_INVALIDATE */ +/* #define DEBUG_TB_FLUSH */ +/* make various TB consistency checks */ +/* #define DEBUG_TB_CHECK */ + +#if !defined(CONFIG_USER_ONLY) +/* TB consistency checks only implemented for usermode emulation. */ +#undef DEBUG_TB_CHECK +#endif + +/* Access to the various translations structures need to be serialised via locks + * for consistency. This is automatic for SoftMMU based system + * emulation due to its single threaded nature. In user-mode emulation + * access to the memory related structures are protected with the + * mmap_lock. + */ +#ifdef CONFIG_SOFTMMU +#define assert_memory_lock() tcg_debug_assert(have_tb_lock) +#else +#define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) +#endif + +#define SMC_BITMAP_USE_THRESHOLD 10 + +typedef struct PageDesc { + /* list of TBs intersecting this ram page */ + TranslationBlock *first_tb; +#ifdef CONFIG_SOFTMMU + /* in order to optimize self modifying code, we count the number + of lookups we do to a given page to use a bitmap */ + unsigned int code_write_count; + unsigned long *code_bitmap; +#else + unsigned long flags; +#endif +} PageDesc; + +/* In system mode we want L1_MAP to be based on ram offsets, + while in user mode we want it to be based on virtual addresses. */ +#if !defined(CONFIG_USER_ONLY) +#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS +# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS +#else +# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS +#endif +#else +# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS +#endif + +/* Size of the L2 (and L3, etc) page tables. */ +#define V_L2_BITS 10 +#define V_L2_SIZE (1 << V_L2_BITS) + +uintptr_t qemu_host_page_size; +intptr_t qemu_host_page_mask; + +/* + * L1 Mapping properties + */ +static int v_l1_size; +static int v_l1_shift; +static int v_l2_levels; + +/* The bottom level has pointers to PageDesc, and is indexed by + * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. + */ +#define V_L1_MIN_BITS 4 +#define V_L1_MAX_BITS (V_L2_BITS + 3) +#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) + +static void *l1_map[V_L1_MAX_SIZE]; + +/* code generation context */ +TCGContext tcg_ctx; +bool parallel_cpus; + +/* translation block context */ +__thread int have_tb_lock; + +static void page_table_config_init(void) +{ + uint32_t v_l1_bits; + + assert(TARGET_PAGE_BITS); + /* The bits remaining after N lower levels of page tables. */ + v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; + if (v_l1_bits < V_L1_MIN_BITS) { + v_l1_bits += V_L2_BITS; + } + + v_l1_size = 1 << v_l1_bits; + v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; + v_l2_levels = v_l1_shift / V_L2_BITS - 1; + + assert(v_l1_bits <= V_L1_MAX_BITS); + assert(v_l1_shift % V_L2_BITS == 0); + assert(v_l2_levels >= 0); +} + +#define assert_tb_locked() tcg_debug_assert(have_tb_lock) +#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock) + +void tb_lock(void) +{ + assert_tb_unlocked(); + qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); + have_tb_lock++; +} + +void tb_unlock(void) +{ + assert_tb_locked(); + have_tb_lock--; + qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); +} + +void tb_lock_reset(void) +{ + if (have_tb_lock) { + qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); + have_tb_lock = 0; + } +} + +static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); + +void cpu_gen_init(void) +{ + tcg_context_init(&tcg_ctx); +} + +/* Encode VAL as a signed leb128 sequence at P. + Return P incremented past the encoded value. */ +static uint8_t *encode_sleb128(uint8_t *p, target_long val) +{ + int more, byte; + + do { + byte = val & 0x7f; + val >>= 7; + more = !((val == 0 && (byte & 0x40) == 0) + || (val == -1 && (byte & 0x40) != 0)); + if (more) { + byte |= 0x80; + } + *p++ = byte; + } while (more); + + return p; +} + +/* Decode a signed leb128 sequence at *PP; increment *PP past the + decoded value. Return the decoded value. */ +static target_long decode_sleb128(uint8_t **pp) +{ + uint8_t *p = *pp; + target_long val = 0; + int byte, shift = 0; + + do { + byte = *p++; + val |= (target_ulong)(byte & 0x7f) << shift; + shift += 7; + } while (byte & 0x80); + if (shift < TARGET_LONG_BITS && (byte & 0x40)) { + val |= -(target_ulong)1 << shift; + } + + *pp = p; + return val; +} + +/* Encode the data collected about the instructions while compiling TB. + Place the data at BLOCK, and return the number of bytes consumed. + + The logical table consisits of TARGET_INSN_START_WORDS target_ulong's, + which come from the target's insn_start data, followed by a uintptr_t + which comes from the host pc of the end of the code implementing the insn. + + Each line of the table is encoded as sleb128 deltas from the previous + line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }. + That is, the first column is seeded with the guest pc, the last column + with the host pc, and the middle columns with zeros. */ + +static int encode_search(TranslationBlock *tb, uint8_t *block) +{ + uint8_t *highwater = tcg_ctx.code_gen_highwater; + uint8_t *p = block; + int i, j, n; + + tb->tc_search = block; + + for (i = 0, n = tb->icount; i < n; ++i) { + target_ulong prev; + + for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { + if (i == 0) { + prev = (j == 0 ? tb->pc : 0); + } else { + prev = tcg_ctx.gen_insn_data[i - 1][j]; + } + p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev); + } + prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]); + p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev); + + /* Test for (pending) buffer overflow. The assumption is that any + one row beginning below the high water mark cannot overrun + the buffer completely. Thus we can test for overflow after + encoding a row without having to check during encoding. */ + if (unlikely(p > highwater)) { + return -1; + } + } + + return p - block; +} + +/* The cpu state corresponding to 'searched_pc' is restored. + * Called with tb_lock held. + */ +static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, + uintptr_t searched_pc) +{ + target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; + uintptr_t host_pc = (uintptr_t)tb->tc_ptr; + CPUArchState *env = cpu->env_ptr; + uint8_t *p = tb->tc_search; + int i, j, num_insns = tb->icount; +#ifdef CONFIG_PROFILER + int64_t ti = profile_getclock(); +#endif + + searched_pc -= GETPC_ADJ; + + if (searched_pc < host_pc) { + return -1; + } + + /* Reconstruct the stored insn data while looking for the point at + which the end of the insn exceeds the searched_pc. */ + for (i = 0; i < num_insns; ++i) { + for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { + data[j] += decode_sleb128(&p); + } + host_pc += decode_sleb128(&p); + if (host_pc > searched_pc) { + goto found; + } + } + return -1; + + found: + if (tb->cflags & CF_USE_ICOUNT) { + assert(use_icount); + /* Reset the cycle counter to the start of the block. */ + cpu->icount_decr.u16.low += num_insns; + /* Clear the IO flag. */ + cpu->can_do_io = 0; + } + cpu->icount_decr.u16.low -= i; + restore_state_to_opc(env, tb, data); + +#ifdef CONFIG_PROFILER + tcg_ctx.restore_time += profile_getclock() - ti; + tcg_ctx.restore_count++; +#endif + return 0; +} + +bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) +{ + TranslationBlock *tb; + bool r = false; + + /* A retaddr of zero is invalid so we really shouldn't have ended + * up here. The target code has likely forgotten to check retaddr + * != 0 before attempting to restore state. We return early to + * avoid blowing up on a recursive tb_lock(). The target must have + * previously survived a failed cpu_restore_state because + * tb_find_pc(0) would have failed anyway. It still should be + * fixed though. + */ + + if (!retaddr) { + return r; + } + + tb_lock(); + tb = tb_find_pc(retaddr); + if (tb) { + cpu_restore_state_from_tb(cpu, tb, retaddr); + if (tb->cflags & CF_NOCACHE) { + /* one-shot translation, invalidate it immediately */ + tb_phys_invalidate(tb, -1); + tb_free(tb); + } + r = true; + } + tb_unlock(); + + return r; +} + +void page_size_init(void) +{ + /* NOTE: we can always suppose that qemu_host_page_size >= + TARGET_PAGE_SIZE */ + qemu_real_host_page_size = getpagesize(); + qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size; + if (qemu_host_page_size == 0) { + qemu_host_page_size = qemu_real_host_page_size; + } + if (qemu_host_page_size < TARGET_PAGE_SIZE) { + qemu_host_page_size = TARGET_PAGE_SIZE; + } + qemu_host_page_mask = -(intptr_t)qemu_host_page_size; +} + +static void page_init(void) +{ + page_size_init(); + page_table_config_init(); + +#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) + { +#ifdef HAVE_KINFO_GETVMMAP + struct kinfo_vmentry *freep; + int i, cnt; + + freep = kinfo_getvmmap(getpid(), &cnt); + if (freep) { + mmap_lock(); + for (i = 0; i < cnt; i++) { + unsigned long startaddr, endaddr; + + startaddr = freep[i].kve_start; + endaddr = freep[i].kve_end; + if (h2g_valid(startaddr)) { + startaddr = h2g(startaddr) & TARGET_PAGE_MASK; + + if (h2g_valid(endaddr)) { + endaddr = h2g(endaddr); + page_set_flags(startaddr, endaddr, PAGE_RESERVED); + } else { +#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS + endaddr = ~0ul; + page_set_flags(startaddr, endaddr, PAGE_RESERVED); +#endif + } + } + } + free(freep); + mmap_unlock(); + } +#else + FILE *f; + + last_brk = (unsigned long)sbrk(0); + + f = fopen("/compat/linux/proc/self/maps", "r"); + if (f) { + mmap_lock(); + + do { + unsigned long startaddr, endaddr; + int n; + + n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); + + if (n == 2 && h2g_valid(startaddr)) { + startaddr = h2g(startaddr) & TARGET_PAGE_MASK; + + if (h2g_valid(endaddr)) { + endaddr = h2g(endaddr); + } else { + endaddr = ~0ul; + } + page_set_flags(startaddr, endaddr, PAGE_RESERVED); + } + } while (!feof(f)); + + fclose(f); + mmap_unlock(); + } +#endif + } +#endif +} + +/* If alloc=1: + * Called with tb_lock held for system emulation. + * Called with mmap_lock held for user-mode emulation. + */ +static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) +{ + PageDesc *pd; + void **lp; + int i; + + if (alloc) { + assert_memory_lock(); + } + + /* Level 1. Always allocated. */ + lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); + + /* Level 2..N-1. */ + for (i = v_l2_levels; i > 0; i--) { + void **p = atomic_rcu_read(lp); + + if (p == NULL) { + if (!alloc) { + return NULL; + } + p = g_new0(void *, V_L2_SIZE); + atomic_rcu_set(lp, p); + } + + lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); + } + + pd = atomic_rcu_read(lp); + if (pd == NULL) { + if (!alloc) { + return NULL; + } + pd = g_new0(PageDesc, V_L2_SIZE); + atomic_rcu_set(lp, pd); + } + + return pd + (index & (V_L2_SIZE - 1)); +} + +static inline PageDesc *page_find(tb_page_addr_t index) +{ + return page_find_alloc(index, 0); +} + +#if defined(CONFIG_USER_ONLY) +/* Currently it is not recommended to allocate big chunks of data in + user mode. It will change when a dedicated libc will be used. */ +/* ??? 64-bit hosts ought to have no problem mmaping data outside the + region in which the guest needs to run. Revisit this. */ +#define USE_STATIC_CODE_GEN_BUFFER +#endif + +/* Minimum size of the code gen buffer. This number is randomly chosen, + but not so small that we can't have a fair number of TB's live. */ +#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) + +/* Maximum size of the code gen buffer we'd like to use. Unless otherwise + indicated, this is constrained by the range of direct branches on the + host cpu, as used by the TCG implementation of goto_tb. */ +#if defined(__x86_64__) +# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) +#elif defined(__sparc__) +# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) +#elif defined(__powerpc64__) +# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) +#elif defined(__powerpc__) +# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) +#elif defined(__aarch64__) +# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) +#elif defined(__s390x__) + /* We have a +- 4GB range on the branches; leave some slop. */ +# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) +#elif defined(__mips__) + /* We have a 256MB branch region, but leave room to make sure the + main executable is also within that region. */ +# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) +#else +# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) +#endif + +#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) + +#define DEFAULT_CODE_GEN_BUFFER_SIZE \ + (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ + ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) + +static inline size_t size_code_gen_buffer(size_t tb_size) +{ + /* Size the buffer. */ + if (tb_size == 0) { +#ifdef USE_STATIC_CODE_GEN_BUFFER + tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; +#else + /* ??? Needs adjustments. */ + /* ??? If we relax the requirement that CONFIG_USER_ONLY use the + static buffer, we could size this on RESERVED_VA, on the text + segment size of the executable, or continue to use the default. */ + tb_size = (unsigned long)(ram_size / 4); +#endif + } + if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { + tb_size = MIN_CODE_GEN_BUFFER_SIZE; + } + if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { + tb_size = MAX_CODE_GEN_BUFFER_SIZE; + } + return tb_size; +} + +#ifdef __mips__ +/* In order to use J and JAL within the code_gen_buffer, we require + that the buffer not cross a 256MB boundary. */ +static inline bool cross_256mb(void *addr, size_t size) +{ + return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; +} + +/* We weren't able to allocate a buffer without crossing that boundary, + so make do with the larger portion of the buffer that doesn't cross. + Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ +static inline void *split_cross_256mb(void *buf1, size_t size1) +{ + void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); + size_t size2 = buf1 + size1 - buf2; + + size1 = buf2 - buf1; + if (size1 < size2) { + size1 = size2; + buf1 = buf2; + } + + tcg_ctx.code_gen_buffer_size = size1; + return buf1; +} +#endif + +#ifdef USE_STATIC_CODE_GEN_BUFFER +static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] + __attribute__((aligned(CODE_GEN_ALIGN))); + +# ifdef _WIN32 +static inline void do_protect(void *addr, long size, int prot) +{ + DWORD old_protect; + VirtualProtect(addr, size, prot, &old_protect); +} + +static inline void map_exec(void *addr, long size) +{ + do_protect(addr, size, PAGE_EXECUTE_READWRITE); +} + +static inline void map_none(void *addr, long size) +{ + do_protect(addr, size, PAGE_NOACCESS); +} +# else +static inline void do_protect(void *addr, long size, int prot) +{ + uintptr_t start, end; + + start = (uintptr_t)addr; + start &= qemu_real_host_page_mask; + + end = (uintptr_t)addr + size; + end = ROUND_UP(end, qemu_real_host_page_size); + + mprotect((void *)start, end - start, prot); +} + +static inline void map_exec(void *addr, long size) +{ + do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC); +} + +static inline void map_none(void *addr, long size) +{ + do_protect(addr, size, PROT_NONE); +} +# endif /* WIN32 */ + +static inline void *alloc_code_gen_buffer(void) +{ + void *buf = static_code_gen_buffer; + size_t full_size, size; + + /* The size of the buffer, rounded down to end on a page boundary. */ + full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer)) + & qemu_real_host_page_mask) - (uintptr_t)buf; + + /* Reserve a guard page. */ + size = full_size - qemu_real_host_page_size; + + /* Honor a command-line option limiting the size of the buffer. */ + if (size > tcg_ctx.code_gen_buffer_size) { + size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size) + & qemu_real_host_page_mask) - (uintptr_t)buf; + } + tcg_ctx.code_gen_buffer_size = size; + +#ifdef __mips__ + if (cross_256mb(buf, size)) { + buf = split_cross_256mb(buf, size); + size = tcg_ctx.code_gen_buffer_size; + } +#endif + + map_exec(buf, size); + map_none(buf + size, qemu_real_host_page_size); + qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); + + return buf; +} +#elif defined(_WIN32) +static inline void *alloc_code_gen_buffer(void) +{ + size_t size = tcg_ctx.code_gen_buffer_size; + void *buf1, *buf2; + + /* Perform the allocation in two steps, so that the guard page + is reserved but uncommitted. */ + buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size, + MEM_RESERVE, PAGE_NOACCESS); + if (buf1 != NULL) { + buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE); + assert(buf1 == buf2); + } + + return buf1; +} +#else +static inline void *alloc_code_gen_buffer(void) +{ + int flags = MAP_PRIVATE | MAP_ANONYMOUS; + uintptr_t start = 0; + size_t size = tcg_ctx.code_gen_buffer_size; + void *buf; + + /* Constrain the position of the buffer based on the host cpu. + Note that these addresses are chosen in concert with the + addresses assigned in the relevant linker script file. */ +# if defined(__PIE__) || defined(__PIC__) + /* Don't bother setting a preferred location if we're building + a position-independent executable. We're more likely to get + an address near the main executable if we let the kernel + choose the address. */ +# elif defined(__x86_64__) && defined(MAP_32BIT) + /* Force the memory down into low memory with the executable. + Leave the choice of exact location with the kernel. */ + flags |= MAP_32BIT; + /* Cannot expect to map more than 800MB in low memory. */ + if (size > 800u * 1024 * 1024) { + tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024; + } +# elif defined(__sparc__) + start = 0x40000000ul; +# elif defined(__s390x__) + start = 0x90000000ul; +# elif defined(__mips__) +# if _MIPS_SIM == _ABI64 + start = 0x128000000ul; +# else + start = 0x08000000ul; +# endif +# endif + + buf = mmap((void *)start, size + qemu_real_host_page_size, + PROT_NONE, flags, -1, 0); + if (buf == MAP_FAILED) { + return NULL; + } + +#ifdef __mips__ + if (cross_256mb(buf, size)) { + /* Try again, with the original still mapped, to avoid re-acquiring + that 256mb crossing. This time don't specify an address. */ + size_t size2; + void *buf2 = mmap(NULL, size + qemu_real_host_page_size, + PROT_NONE, flags, -1, 0); + switch ((int)(buf2 != MAP_FAILED)) { + case 1: + if (!cross_256mb(buf2, size)) { + /* Success! Use the new buffer. */ + munmap(buf, size + qemu_real_host_page_size); + break; + } + /* Failure. Work with what we had. */ + munmap(buf2, size + qemu_real_host_page_size); + /* fallthru */ + default: + /* Split the original buffer. Free the smaller half. */ + buf2 = split_cross_256mb(buf, size); + size2 = tcg_ctx.code_gen_buffer_size; + if (buf == buf2) { + munmap(buf + size2 + qemu_real_host_page_size, size - size2); + } else { + munmap(buf, size - size2); + } + size = size2; + break; + } + buf = buf2; + } +#endif + + /* Make the final buffer accessible. The guard page at the end + will remain inaccessible with PROT_NONE. */ + mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC); + + /* Request large pages for the buffer. */ + qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); + + return buf; +} +#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ + +static inline void code_gen_alloc(size_t tb_size) +{ + tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); + tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); + if (tcg_ctx.code_gen_buffer == NULL) { + fprintf(stderr, "Could not allocate dynamic translator buffer\n"); + exit(1); + } + + /* size this conservatively -- realloc later if needed */ + tcg_ctx.tb_ctx.tbs_size = + tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE / 8; + if (unlikely(!tcg_ctx.tb_ctx.tbs_size)) { + tcg_ctx.tb_ctx.tbs_size = 64 * 1024; + } + tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock *, tcg_ctx.tb_ctx.tbs_size); + + qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); +} + +static void tb_htable_init(void) +{ + unsigned int mode = QHT_MODE_AUTO_RESIZE; + + qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode); +} + +/* Must be called before using the QEMU cpus. 'tb_size' is the size + (in bytes) allocated to the translation buffer. Zero means default + size. */ +void tcg_exec_init(unsigned long tb_size) +{ + cpu_gen_init(); + page_init(); + tb_htable_init(); + code_gen_alloc(tb_size); +#if defined(CONFIG_SOFTMMU) + /* There's no guest base to take into account, so go ahead and + initialize the prologue now. */ + tcg_prologue_init(&tcg_ctx); +#endif +} + +bool tcg_enabled(void) +{ + return tcg_ctx.code_gen_buffer != NULL; +} + +/* + * Allocate a new translation block. Flush the translation buffer if + * too many translation blocks or too much generated code. + * + * Called with tb_lock held. + */ +static TranslationBlock *tb_alloc(target_ulong pc) +{ + TranslationBlock *tb; + TBContext *ctx; + + assert_tb_locked(); + + tb = tcg_tb_alloc(&tcg_ctx); + if (unlikely(tb == NULL)) { + return NULL; + } + ctx = &tcg_ctx.tb_ctx; + if (unlikely(ctx->nb_tbs == ctx->tbs_size)) { + ctx->tbs_size *= 2; + ctx->tbs = g_renew(TranslationBlock *, ctx->tbs, ctx->tbs_size); + } + ctx->tbs[ctx->nb_tbs++] = tb; + return tb; +} + +/* Called with tb_lock held. */ +void tb_free(TranslationBlock *tb) +{ + assert_tb_locked(); + + /* In practice this is mostly used for single use temporary TB + Ignore the hard cases and just back up if this TB happens to + be the last one generated. */ + if (tcg_ctx.tb_ctx.nb_tbs > 0 && + tb == tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { + size_t struct_size = ROUND_UP(sizeof(*tb), qemu_icache_linesize); + + tcg_ctx.code_gen_ptr = tb->tc_ptr - struct_size; + tcg_ctx.tb_ctx.nb_tbs--; + } +} + +static inline void invalidate_page_bitmap(PageDesc *p) +{ +#ifdef CONFIG_SOFTMMU + g_free(p->code_bitmap); + p->code_bitmap = NULL; + p->code_write_count = 0; +#endif +} + +/* Set to NULL all the 'first_tb' fields in all PageDescs. */ +static void page_flush_tb_1(int level, void **lp) +{ + int i; + + if (*lp == NULL) { + return; + } + if (level == 0) { + PageDesc *pd = *lp; + + for (i = 0; i < V_L2_SIZE; ++i) { + pd[i].first_tb = NULL; + invalidate_page_bitmap(pd + i); + } + } else { + void **pp = *lp; + + for (i = 0; i < V_L2_SIZE; ++i) { + page_flush_tb_1(level - 1, pp + i); + } + } +} + +static void page_flush_tb(void) +{ + int i, l1_sz = v_l1_size; + + for (i = 0; i < l1_sz; i++) { + page_flush_tb_1(v_l2_levels, l1_map + i); + } +} + +/* flush all the translation blocks */ +static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) +{ + tb_lock(); + + /* If it is already been done on request of another CPU, + * just retry. + */ + if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) { + goto done; + } + +#if defined(DEBUG_TB_FLUSH) + printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", + (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), + tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? + ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / + tcg_ctx.tb_ctx.nb_tbs : 0); +#endif + if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) + > tcg_ctx.code_gen_buffer_size) { + cpu_abort(cpu, "Internal error: code buffer overflow\n"); + } + + CPU_FOREACH(cpu) { + int i; + + for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) { + atomic_set(&cpu->tb_jmp_cache[i], NULL); + } + } + + tcg_ctx.tb_ctx.nb_tbs = 0; + qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE); + page_flush_tb(); + + tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; + /* XXX: flush processor icache at this point if cache flush is + expensive */ + atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count, + tcg_ctx.tb_ctx.tb_flush_count + 1); + +done: + tb_unlock(); +} + +void tb_flush(CPUState *cpu) +{ + if (tcg_enabled()) { + unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count); + async_safe_run_on_cpu(cpu, do_tb_flush, + RUN_ON_CPU_HOST_INT(tb_flush_count)); + } +} + +#ifdef DEBUG_TB_CHECK + +static void +do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp) +{ + TranslationBlock *tb = p; + target_ulong addr = *(target_ulong *)userp; + + if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { + printf("ERROR invalidate: address=" TARGET_FMT_lx + " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); + } +} + +/* verify that all the pages have correct rights for code + * + * Called with tb_lock held. + */ +static void tb_invalidate_check(target_ulong address) +{ + address &= TARGET_PAGE_MASK; + qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address); +} + +static void +do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp) +{ + TranslationBlock *tb = p; + int flags1, flags2; + + flags1 = page_get_flags(tb->pc); + flags2 = page_get_flags(tb->pc + tb->size - 1); + if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { + printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", + (long)tb->pc, tb->size, flags1, flags2); + } +} + +/* verify that all the pages have correct rights for code */ +static void tb_page_check(void) +{ + qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL); +} + +#endif + +static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) +{ + TranslationBlock *tb1; + unsigned int n1; + + for (;;) { + tb1 = *ptb; + n1 = (uintptr_t)tb1 & 3; + tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); + if (tb1 == tb) { + *ptb = tb1->page_next[n1]; + break; + } + ptb = &tb1->page_next[n1]; + } +} + +/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */ +static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n) +{ + TranslationBlock *tb1; + uintptr_t *ptb, ntb; + unsigned int n1; + + ptb = &tb->jmp_list_next[n]; + if (*ptb) { + /* find tb(n) in circular list */ + for (;;) { + ntb = *ptb; + n1 = ntb & 3; + tb1 = (TranslationBlock *)(ntb & ~3); + if (n1 == n && tb1 == tb) { + break; + } + if (n1 == 2) { + ptb = &tb1->jmp_list_first; + } else { + ptb = &tb1->jmp_list_next[n1]; + } + } + /* now we can suppress tb(n) from the list */ + *ptb = tb->jmp_list_next[n]; + + tb->jmp_list_next[n] = (uintptr_t)NULL; + } +} + +/* reset the jump entry 'n' of a TB so that it is not chained to + another TB */ +static inline void tb_reset_jump(TranslationBlock *tb, int n) +{ + uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]); + tb_set_jmp_target(tb, n, addr); +} + +/* remove any jumps to the TB */ +static inline void tb_jmp_unlink(TranslationBlock *tb) +{ + TranslationBlock *tb1; + uintptr_t *ptb, ntb; + unsigned int n1; + + ptb = &tb->jmp_list_first; + for (;;) { + ntb = *ptb; + n1 = ntb & 3; + tb1 = (TranslationBlock *)(ntb & ~3); + if (n1 == 2) { + break; + } + tb_reset_jump(tb1, n1); + *ptb = tb1->jmp_list_next[n1]; + tb1->jmp_list_next[n1] = (uintptr_t)NULL; + } +} + +/* invalidate one TB + * + * Called with tb_lock held. + */ +void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) +{ + CPUState *cpu; + PageDesc *p; + uint32_t h; + tb_page_addr_t phys_pc; + + assert_tb_locked(); + + atomic_set(&tb->invalid, true); + + /* remove the TB from the hash list */ + phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); + h = tb_hash_func(phys_pc, tb->pc, tb->flags); + qht_remove(&tcg_ctx.tb_ctx.htable, tb, h); + + /* remove the TB from the page list */ + if (tb->page_addr[0] != page_addr) { + p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); + tb_page_remove(&p->first_tb, tb); + invalidate_page_bitmap(p); + } + if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { + p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); + tb_page_remove(&p->first_tb, tb); + invalidate_page_bitmap(p); + } + + /* remove the TB from the hash list */ + h = tb_jmp_cache_hash_func(tb->pc); + CPU_FOREACH(cpu) { + if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { + atomic_set(&cpu->tb_jmp_cache[h], NULL); + } + } + + /* suppress this TB from the two jump lists */ + tb_remove_from_jmp_list(tb, 0); + tb_remove_from_jmp_list(tb, 1); + + /* suppress any remaining jumps to this TB */ + tb_jmp_unlink(tb); + + tcg_ctx.tb_ctx.tb_phys_invalidate_count++; +} + +#ifdef CONFIG_SOFTMMU +static void build_page_bitmap(PageDesc *p) +{ + int n, tb_start, tb_end; + TranslationBlock *tb; + + p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); + + tb = p->first_tb; + while (tb != NULL) { + n = (uintptr_t)tb & 3; + tb = (TranslationBlock *)((uintptr_t)tb & ~3); + /* NOTE: this is subtle as a TB may span two physical pages */ + if (n == 0) { + /* NOTE: tb_end may be after the end of the page, but + it is not a problem */ + tb_start = tb->pc & ~TARGET_PAGE_MASK; + tb_end = tb_start + tb->size; + if (tb_end > TARGET_PAGE_SIZE) { + tb_end = TARGET_PAGE_SIZE; + } + } else { + tb_start = 0; + tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); + } + bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); + tb = tb->page_next[n]; + } +} +#endif + +/* add the tb in the target page and protect it if necessary + * + * Called with mmap_lock held for user-mode emulation. + */ +static inline void tb_alloc_page(TranslationBlock *tb, + unsigned int n, tb_page_addr_t page_addr) +{ + PageDesc *p; +#ifndef CONFIG_USER_ONLY + bool page_already_protected; +#endif + + assert_memory_lock(); + + tb->page_addr[n] = page_addr; + p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); + tb->page_next[n] = p->first_tb; +#ifndef CONFIG_USER_ONLY + page_already_protected = p->first_tb != NULL; +#endif + p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); + invalidate_page_bitmap(p); + +#if defined(CONFIG_USER_ONLY) + if (p->flags & PAGE_WRITE) { + target_ulong addr; + PageDesc *p2; + int prot; + + /* force the host page as non writable (writes will have a + page fault + mprotect overhead) */ + page_addr &= qemu_host_page_mask; + prot = 0; + for (addr = page_addr; addr < page_addr + qemu_host_page_size; + addr += TARGET_PAGE_SIZE) { + + p2 = page_find(addr >> TARGET_PAGE_BITS); + if (!p2) { + continue; + } + prot |= p2->flags; + p2->flags &= ~PAGE_WRITE; + } + mprotect(g2h(page_addr), qemu_host_page_size, + (prot & PAGE_BITS) & ~PAGE_WRITE); +#ifdef DEBUG_TB_INVALIDATE + printf("protecting code page: 0x" TARGET_FMT_lx "\n", + page_addr); +#endif + } +#else + /* if some code is already present, then the pages are already + protected. So we handle the case where only the first TB is + allocated in a physical page */ + if (!page_already_protected) { + tlb_protect_code(page_addr); + } +#endif +} + +/* add a new TB and link it to the physical page tables. phys_page2 is + * (-1) to indicate that only one page contains the TB. + * + * Called with mmap_lock held for user-mode emulation. + */ +static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, + tb_page_addr_t phys_page2) +{ + uint32_t h; + + assert_memory_lock(); + + /* add in the page list */ + tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); + if (phys_page2 != -1) { + tb_alloc_page(tb, 1, phys_page2); + } else { + tb->page_addr[1] = -1; + } + + /* add in the hash table */ + h = tb_hash_func(phys_pc, tb->pc, tb->flags); + qht_insert(&tcg_ctx.tb_ctx.htable, tb, h); + +#ifdef DEBUG_TB_CHECK + tb_page_check(); +#endif +} + +/* Called with mmap_lock held for user mode emulation. */ +TranslationBlock *tb_gen_code(CPUState *cpu, + target_ulong pc, target_ulong cs_base, + uint32_t flags, int cflags) +{ + CPUArchState *env = cpu->env_ptr; + TranslationBlock *tb; + tb_page_addr_t phys_pc, phys_page2; + target_ulong virt_page2; + tcg_insn_unit *gen_code_buf; + int gen_code_size, search_size; +#ifdef CONFIG_PROFILER + int64_t ti; +#endif + assert_memory_lock(); + + phys_pc = get_page_addr_code(env, pc); + if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) { + cflags |= CF_USE_ICOUNT; + } + + tb = tb_alloc(pc); + if (unlikely(!tb)) { + buffer_overflow: + /* flush must be done */ + tb_flush(cpu); + mmap_unlock(); + /* Make the execution loop process the flush as soon as possible. */ + cpu->exception_index = EXCP_INTERRUPT; + cpu_loop_exit(cpu); + } + + gen_code_buf = tcg_ctx.code_gen_ptr; + tb->tc_ptr = gen_code_buf; + tb->pc = pc; + tb->cs_base = cs_base; + tb->flags = flags; + tb->cflags = cflags; + tb->invalid = false; + +#ifdef CONFIG_PROFILER + tcg_ctx.tb_count1++; /* includes aborted translations because of + exceptions */ + ti = profile_getclock(); +#endif + + tcg_func_start(&tcg_ctx); + + tcg_ctx.cpu = ENV_GET_CPU(env); + gen_intermediate_code(env, tb); + tcg_ctx.cpu = NULL; + + trace_translate_block(tb, tb->pc, tb->tc_ptr); + + /* generate machine code */ + tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; + tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; + tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset; +#ifdef USE_DIRECT_JUMP + tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset; + tcg_ctx.tb_jmp_target_addr = NULL; +#else + tcg_ctx.tb_jmp_insn_offset = NULL; + tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr; +#endif + +#ifdef CONFIG_PROFILER + tcg_ctx.tb_count++; + tcg_ctx.interm_time += profile_getclock() - ti; + tcg_ctx.code_time -= profile_getclock(); +#endif + + /* ??? Overflow could be handled better here. In particular, we + don't need to re-do gen_intermediate_code, nor should we re-do + the tcg optimization currently hidden inside tcg_gen_code. All + that should be required is to flush the TBs, allocate a new TB, + re-initialize it per above, and re-do the actual code generation. */ + gen_code_size = tcg_gen_code(&tcg_ctx, tb); + if (unlikely(gen_code_size < 0)) { + goto buffer_overflow; + } + search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); + if (unlikely(search_size < 0)) { + goto buffer_overflow; + } + +#ifdef CONFIG_PROFILER + tcg_ctx.code_time += profile_getclock(); + tcg_ctx.code_in_len += tb->size; + tcg_ctx.code_out_len += gen_code_size; + tcg_ctx.search_out_len += search_size; +#endif + +#ifdef DEBUG_DISAS + if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && + qemu_log_in_addr_range(tb->pc)) { + qemu_log_lock(); + qemu_log("OUT: [size=%d]\n", gen_code_size); + log_disas(tb->tc_ptr, gen_code_size); + qemu_log("\n"); + qemu_log_flush(); + qemu_log_unlock(); + } +#endif + + tcg_ctx.code_gen_ptr = (void *) + ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, + CODE_GEN_ALIGN); + + /* init jump list */ + assert(((uintptr_t)tb & 3) == 0); + tb->jmp_list_first = (uintptr_t)tb | 2; + tb->jmp_list_next[0] = (uintptr_t)NULL; + tb->jmp_list_next[1] = (uintptr_t)NULL; + + /* init original jump addresses wich has been set during tcg_gen_code() */ + if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { + tb_reset_jump(tb, 0); + } + if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { + tb_reset_jump(tb, 1); + } + + /* check next page if needed */ + virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; + phys_page2 = -1; + if ((pc & TARGET_PAGE_MASK) != virt_page2) { + phys_page2 = get_page_addr_code(env, virt_page2); + } + /* As long as consistency of the TB stuff is provided by tb_lock in user + * mode and is implicit in single-threaded softmmu emulation, no explicit + * memory barrier is required before tb_link_page() makes the TB visible + * through the physical hash table and physical page list. + */ + tb_link_page(tb, phys_pc, phys_page2); + return tb; +} + +/* + * Invalidate all TBs which intersect with the target physical address range + * [start;end[. NOTE: start and end may refer to *different* physical pages. + * 'is_cpu_write_access' should be true if called from a real cpu write + * access: the virtual CPU will exit the current TB if code is modified inside + * this TB. + * + * Called with mmap_lock held for user-mode emulation, grabs tb_lock + * Called with tb_lock held for system-mode emulation + */ +static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end) +{ + while (start < end) { + tb_invalidate_phys_page_range(start, end, 0); + start &= TARGET_PAGE_MASK; + start += TARGET_PAGE_SIZE; + } +} + +#ifdef CONFIG_SOFTMMU +void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end) +{ + assert_tb_locked(); + tb_invalidate_phys_range_1(start, end); +} +#else +void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end) +{ + assert_memory_lock(); + tb_lock(); + tb_invalidate_phys_range_1(start, end); + tb_unlock(); +} +#endif +/* + * Invalidate all TBs which intersect with the target physical address range + * [start;end[. NOTE: start and end must refer to the *same* physical page. + * 'is_cpu_write_access' should be true if called from a real cpu write + * access: the virtual CPU will exit the current TB if code is modified inside + * this TB. + * + * Called with tb_lock/mmap_lock held for user-mode emulation + * Called with tb_lock held for system-mode emulation + */ +void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, + int is_cpu_write_access) +{ + TranslationBlock *tb, *tb_next; +#if defined(TARGET_HAS_PRECISE_SMC) + CPUState *cpu = current_cpu; + CPUArchState *env = NULL; +#endif + tb_page_addr_t tb_start, tb_end; + PageDesc *p; + int n; +#ifdef TARGET_HAS_PRECISE_SMC + int current_tb_not_found = is_cpu_write_access; + TranslationBlock *current_tb = NULL; + int current_tb_modified = 0; + target_ulong current_pc = 0; + target_ulong current_cs_base = 0; + uint32_t current_flags = 0; +#endif /* TARGET_HAS_PRECISE_SMC */ + + assert_memory_lock(); + assert_tb_locked(); + + p = page_find(start >> TARGET_PAGE_BITS); + if (!p) { + return; + } +#if defined(TARGET_HAS_PRECISE_SMC) + if (cpu != NULL) { + env = cpu->env_ptr; + } +#endif + + /* we remove all the TBs in the range [start, end[ */ + /* XXX: see if in some cases it could be faster to invalidate all + the code */ + tb = p->first_tb; + while (tb != NULL) { + n = (uintptr_t)tb & 3; + tb = (TranslationBlock *)((uintptr_t)tb & ~3); + tb_next = tb->page_next[n]; + /* NOTE: this is subtle as a TB may span two physical pages */ + if (n == 0) { + /* NOTE: tb_end may be after the end of the page, but + it is not a problem */ + tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); + tb_end = tb_start + tb->size; + } else { + tb_start = tb->page_addr[1]; + tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); + } + if (!(tb_end <= start || tb_start >= end)) { +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_not_found) { + current_tb_not_found = 0; + current_tb = NULL; + if (cpu->mem_io_pc) { + /* now we have a real cpu fault */ + current_tb = tb_find_pc(cpu->mem_io_pc); + } + } + if (current_tb == tb && + (current_tb->cflags & CF_COUNT_MASK) != 1) { + /* If we are modifying the current TB, we must stop + its execution. We could be more precise by checking + that the modification is after the current PC, but it + would require a specialized function to partially + restore the CPU state */ + + current_tb_modified = 1; + cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); + cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, + ¤t_flags); + } +#endif /* TARGET_HAS_PRECISE_SMC */ + tb_phys_invalidate(tb, -1); + } + tb = tb_next; + } +#if !defined(CONFIG_USER_ONLY) + /* if no code remaining, no need to continue to use slow writes */ + if (!p->first_tb) { + invalidate_page_bitmap(p); + tlb_unprotect_code(start); + } +#endif +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_modified) { + /* we generate a block containing just the instruction + modifying the memory. It will ensure that it cannot modify + itself */ + tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); + cpu_loop_exit_noexc(cpu); + } +#endif +} + +#ifdef CONFIG_SOFTMMU +/* len must be <= 8 and start must be a multiple of len. + * Called via softmmu_template.h when code areas are written to with + * iothread mutex not held. + */ +void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) +{ + PageDesc *p; + +#if 0 + if (1) { + qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", + cpu_single_env->mem_io_vaddr, len, + cpu_single_env->eip, + cpu_single_env->eip + + (intptr_t)cpu_single_env->segs[R_CS].base); + } +#endif + assert_memory_lock(); + + p = page_find(start >> TARGET_PAGE_BITS); + if (!p) { + return; + } + if (!p->code_bitmap && + ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { + /* build code bitmap. FIXME: writes should be protected by + * tb_lock, reads by tb_lock or RCU. + */ + build_page_bitmap(p); + } + if (p->code_bitmap) { + unsigned int nr; + unsigned long b; + + nr = start & ~TARGET_PAGE_MASK; + b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); + if (b & ((1 << len) - 1)) { + goto do_invalidate; + } + } else { + do_invalidate: + tb_invalidate_phys_page_range(start, start + len, 1); + } +} +#else +/* Called with mmap_lock held. If pc is not 0 then it indicates the + * host PC of the faulting store instruction that caused this invalidate. + * Returns true if the caller needs to abort execution of the current + * TB (because it was modified by this store and the guest CPU has + * precise-SMC semantics). + */ +static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) +{ + TranslationBlock *tb; + PageDesc *p; + int n; +#ifdef TARGET_HAS_PRECISE_SMC + TranslationBlock *current_tb = NULL; + CPUState *cpu = current_cpu; + CPUArchState *env = NULL; + int current_tb_modified = 0; + target_ulong current_pc = 0; + target_ulong current_cs_base = 0; + uint32_t current_flags = 0; +#endif + + assert_memory_lock(); + + addr &= TARGET_PAGE_MASK; + p = page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + return false; + } + + tb_lock(); + tb = p->first_tb; +#ifdef TARGET_HAS_PRECISE_SMC + if (tb && pc != 0) { + current_tb = tb_find_pc(pc); + } + if (cpu != NULL) { + env = cpu->env_ptr; + } +#endif + while (tb != NULL) { + n = (uintptr_t)tb & 3; + tb = (TranslationBlock *)((uintptr_t)tb & ~3); +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb == tb && + (current_tb->cflags & CF_COUNT_MASK) != 1) { + /* If we are modifying the current TB, we must stop + its execution. We could be more precise by checking + that the modification is after the current PC, but it + would require a specialized function to partially + restore the CPU state */ + + current_tb_modified = 1; + cpu_restore_state_from_tb(cpu, current_tb, pc); + cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, + ¤t_flags); + } +#endif /* TARGET_HAS_PRECISE_SMC */ + tb_phys_invalidate(tb, addr); + tb = tb->page_next[n]; + } + p->first_tb = NULL; +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_modified) { + /* we generate a block containing just the instruction + modifying the memory. It will ensure that it cannot modify + itself */ + tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); + /* tb_lock will be reset after cpu_loop_exit_noexc longjmps + * back into the cpu_exec loop. */ + return true; + } +#endif + tb_unlock(); + + return false; +} +#endif + +/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < + tb[1].tc_ptr. Return NULL if not found */ +static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) +{ + int m_min, m_max, m; + uintptr_t v; + TranslationBlock *tb; + + if (tcg_ctx.tb_ctx.nb_tbs <= 0) { + return NULL; + } + if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || + tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { + return NULL; + } + /* binary search (cf Knuth) */ + m_min = 0; + m_max = tcg_ctx.tb_ctx.nb_tbs - 1; + while (m_min <= m_max) { + m = (m_min + m_max) >> 1; + tb = tcg_ctx.tb_ctx.tbs[m]; + v = (uintptr_t)tb->tc_ptr; + if (v == tc_ptr) { + return tb; + } else if (tc_ptr < v) { + m_max = m - 1; + } else { + m_min = m + 1; + } + } + return tcg_ctx.tb_ctx.tbs[m_max]; +} + +#if !defined(CONFIG_USER_ONLY) +void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) +{ + ram_addr_t ram_addr; + MemoryRegion *mr; + hwaddr l = 1; + + rcu_read_lock(); + mr = address_space_translate(as, addr, &addr, &l, false); + if (!(memory_region_is_ram(mr) + || memory_region_is_romd(mr))) { + rcu_read_unlock(); + return; + } + ram_addr = memory_region_get_ram_addr(mr) + addr; + tb_lock(); + tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); + tb_unlock(); + rcu_read_unlock(); +} +#endif /* !defined(CONFIG_USER_ONLY) */ + +/* Called with tb_lock held. */ +void tb_check_watchpoint(CPUState *cpu) +{ + TranslationBlock *tb; + + tb = tb_find_pc(cpu->mem_io_pc); + if (tb) { + /* We can use retranslation to find the PC. */ + cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); + tb_phys_invalidate(tb, -1); + } else { + /* The exception probably happened in a helper. The CPU state should + have been saved before calling it. Fetch the PC from there. */ + CPUArchState *env = cpu->env_ptr; + target_ulong pc, cs_base; + tb_page_addr_t addr; + uint32_t flags; + + cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); + addr = get_page_addr_code(env, pc); + tb_invalidate_phys_range(addr, addr + 1); + } +} + +#ifndef CONFIG_USER_ONLY +/* in deterministic execution mode, instructions doing device I/Os + * must be at the end of the TB. + * + * Called by softmmu_template.h, with iothread mutex not held. + */ +void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) +{ +#if defined(TARGET_MIPS) || defined(TARGET_SH4) + CPUArchState *env = cpu->env_ptr; +#endif + TranslationBlock *tb; + uint32_t n, cflags; + target_ulong pc, cs_base; + uint32_t flags; + + tb_lock(); + tb = tb_find_pc(retaddr); + if (!tb) { + cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", + (void *)retaddr); + } + n = cpu->icount_decr.u16.low + tb->icount; + cpu_restore_state_from_tb(cpu, tb, retaddr); + /* Calculate how many instructions had been executed before the fault + occurred. */ + n = n - cpu->icount_decr.u16.low; + /* Generate a new TB ending on the I/O insn. */ + n++; + /* On MIPS and SH, delay slot instructions can only be restarted if + they were already the first instruction in the TB. If this is not + the first instruction in a TB then re-execute the preceding + branch. */ +#if defined(TARGET_MIPS) + if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { + env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); + cpu->icount_decr.u16.low++; + env->hflags &= ~MIPS_HFLAG_BMASK; + } +#elif defined(TARGET_SH4) + if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 + && n > 1) { + env->pc -= 2; + cpu->icount_decr.u16.low++; + env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); + } +#endif + /* This should never happen. */ + if (n > CF_COUNT_MASK) { + cpu_abort(cpu, "TB too big during recompile"); + } + + cflags = n | CF_LAST_IO; + pc = tb->pc; + cs_base = tb->cs_base; + flags = tb->flags; + tb_phys_invalidate(tb, -1); + if (tb->cflags & CF_NOCACHE) { + if (tb->orig_tb) { + /* Invalidate original TB if this TB was generated in + * cpu_exec_nocache() */ + tb_phys_invalidate(tb->orig_tb, -1); + } + tb_free(tb); + } + /* FIXME: In theory this could raise an exception. In practice + we have already translated the block once so it's probably ok. */ + tb_gen_code(cpu, pc, cs_base, flags, cflags); + + /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not + * the first in the TB) then we end up generating a whole new TB and + * repeating the fault, which is horribly inefficient. + * Better would be to execute just this insn uncached, or generate a + * second new TB. + * + * cpu_loop_exit_noexc will longjmp back to cpu_exec where the + * tb_lock gets reset. + */ + cpu_loop_exit_noexc(cpu); +} + +void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) +{ + unsigned int i; + + /* Discard jump cache entries for any tb which might potentially + overlap the flushed page. */ + i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); + memset(&cpu->tb_jmp_cache[i], 0, + TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); + + i = tb_jmp_cache_hash_page(addr); + memset(&cpu->tb_jmp_cache[i], 0, + TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); +} + +static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf, + struct qht_stats hst) +{ + uint32_t hgram_opts; + size_t hgram_bins; + char *hgram; + + if (!hst.head_buckets) { + return; + } + cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", + hst.used_head_buckets, hst.head_buckets, + (double)hst.used_head_buckets / hst.head_buckets * 100); + + hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; + hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; + if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { + hgram_opts |= QDIST_PR_NODECIMAL; + } + hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); + cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", + qdist_avg(&hst.occupancy) * 100, hgram); + g_free(hgram); + + hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; + hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); + if (hgram_bins > 10) { + hgram_bins = 10; + } else { + hgram_bins = 0; + hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; + } + hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); + cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n", + qdist_avg(&hst.chain), hgram); + g_free(hgram); +} + +void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) +{ + int i, target_code_size, max_target_code_size; + int direct_jmp_count, direct_jmp2_count, cross_page; + TranslationBlock *tb; + struct qht_stats hst; + + tb_lock(); + + target_code_size = 0; + max_target_code_size = 0; + cross_page = 0; + direct_jmp_count = 0; + direct_jmp2_count = 0; + for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { + tb = tcg_ctx.tb_ctx.tbs[i]; + target_code_size += tb->size; + if (tb->size > max_target_code_size) { + max_target_code_size = tb->size; + } + if (tb->page_addr[1] != -1) { + cross_page++; + } + if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { + direct_jmp_count++; + if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { + direct_jmp2_count++; + } + } + } + /* XXX: avoid using doubles ? */ + cpu_fprintf(f, "Translation buffer state:\n"); + cpu_fprintf(f, "gen code size %td/%zd\n", + tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, + tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer); + cpu_fprintf(f, "TB count %d\n", tcg_ctx.tb_ctx.nb_tbs); + cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", + tcg_ctx.tb_ctx.nb_tbs ? target_code_size / + tcg_ctx.tb_ctx.nb_tbs : 0, + max_target_code_size); + cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", + tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - + tcg_ctx.code_gen_buffer) / + tcg_ctx.tb_ctx.nb_tbs : 0, + target_code_size ? (double) (tcg_ctx.code_gen_ptr - + tcg_ctx.code_gen_buffer) / + target_code_size : 0); + cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, + tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / + tcg_ctx.tb_ctx.nb_tbs : 0); + cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", + direct_jmp_count, + tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / + tcg_ctx.tb_ctx.nb_tbs : 0, + direct_jmp2_count, + tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / + tcg_ctx.tb_ctx.nb_tbs : 0); + + qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst); + print_qht_statistics(f, cpu_fprintf, hst); + qht_statistics_destroy(&hst); + + cpu_fprintf(f, "\nStatistics:\n"); + cpu_fprintf(f, "TB flush count %u\n", + atomic_read(&tcg_ctx.tb_ctx.tb_flush_count)); + cpu_fprintf(f, "TB invalidate count %d\n", + tcg_ctx.tb_ctx.tb_phys_invalidate_count); + cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); + tcg_dump_info(f, cpu_fprintf); + + tb_unlock(); +} + +void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf) +{ + tcg_dump_op_count(f, cpu_fprintf); +} + +#else /* CONFIG_USER_ONLY */ + +void cpu_interrupt(CPUState *cpu, int mask) +{ + g_assert(qemu_mutex_iothread_locked()); + cpu->interrupt_request |= mask; + cpu->icount_decr.u16.high = -1; +} + +/* + * Walks guest process memory "regions" one by one + * and calls callback function 'fn' for each region. + */ +struct walk_memory_regions_data { + walk_memory_regions_fn fn; + void *priv; + target_ulong start; + int prot; +}; + +static int walk_memory_regions_end(struct walk_memory_regions_data *data, + target_ulong end, int new_prot) +{ + if (data->start != -1u) { + int rc = data->fn(data->priv, data->start, end, data->prot); + if (rc != 0) { + return rc; + } + } + + data->start = (new_prot ? end : -1u); + data->prot = new_prot; + + return 0; +} + +static int walk_memory_regions_1(struct walk_memory_regions_data *data, + target_ulong base, int level, void **lp) +{ + target_ulong pa; + int i, rc; + + if (*lp == NULL) { + return walk_memory_regions_end(data, base, 0); + } + + if (level == 0) { + PageDesc *pd = *lp; + + for (i = 0; i < V_L2_SIZE; ++i) { + int prot = pd[i].flags; + + pa = base | (i << TARGET_PAGE_BITS); + if (prot != data->prot) { + rc = walk_memory_regions_end(data, pa, prot); + if (rc != 0) { + return rc; + } + } + } + } else { + void **pp = *lp; + + for (i = 0; i < V_L2_SIZE; ++i) { + pa = base | ((target_ulong)i << + (TARGET_PAGE_BITS + V_L2_BITS * level)); + rc = walk_memory_regions_1(data, pa, level - 1, pp + i); + if (rc != 0) { + return rc; + } + } + } + + return 0; +} + +int walk_memory_regions(void *priv, walk_memory_regions_fn fn) +{ + struct walk_memory_regions_data data; + uintptr_t i, l1_sz = v_l1_size; + + data.fn = fn; + data.priv = priv; + data.start = -1u; + data.prot = 0; + + for (i = 0; i < l1_sz; i++) { + target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); + int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); + if (rc != 0) { + return rc; + } + } + + return walk_memory_regions_end(&data, 0, 0); +} + +static int dump_region(void *priv, target_ulong start, + target_ulong end, unsigned long prot) +{ + FILE *f = (FILE *)priv; + + (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx + " "TARGET_FMT_lx" %c%c%c\n", + start, end, end - start, + ((prot & PAGE_READ) ? 'r' : '-'), + ((prot & PAGE_WRITE) ? 'w' : '-'), + ((prot & PAGE_EXEC) ? 'x' : '-')); + + return 0; +} + +/* dump memory mappings */ +void page_dump(FILE *f) +{ + const int length = sizeof(target_ulong) * 2; + (void) fprintf(f, "%-*s %-*s %-*s %s\n", + length, "start", length, "end", length, "size", "prot"); + walk_memory_regions(f, dump_region); +} + +int page_get_flags(target_ulong address) +{ + PageDesc *p; + + p = page_find(address >> TARGET_PAGE_BITS); + if (!p) { + return 0; + } + return p->flags; +} + +/* Modify the flags of a page and invalidate the code if necessary. + The flag PAGE_WRITE_ORG is positioned automatically depending + on PAGE_WRITE. The mmap_lock should already be held. */ +void page_set_flags(target_ulong start, target_ulong end, int flags) +{ + target_ulong addr, len; + + /* This function should never be called with addresses outside the + guest address space. If this assert fires, it probably indicates + a missing call to h2g_valid. */ +#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS + assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); +#endif + assert(start < end); + assert_memory_lock(); + + start = start & TARGET_PAGE_MASK; + end = TARGET_PAGE_ALIGN(end); + + if (flags & PAGE_WRITE) { + flags |= PAGE_WRITE_ORG; + } + + for (addr = start, len = end - start; + len != 0; + len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { + PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); + + /* If the write protection bit is set, then we invalidate + the code inside. */ + if (!(p->flags & PAGE_WRITE) && + (flags & PAGE_WRITE) && + p->first_tb) { + tb_invalidate_phys_page(addr, 0); + } + p->flags = flags; + } +} + +int page_check_range(target_ulong start, target_ulong len, int flags) +{ + PageDesc *p; + target_ulong end; + target_ulong addr; + + /* This function should never be called with addresses outside the + guest address space. If this assert fires, it probably indicates + a missing call to h2g_valid. */ +#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS + assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); +#endif + + if (len == 0) { + return 0; + } + if (start + len - 1 < start) { + /* We've wrapped around. */ + return -1; + } + + /* must do before we loose bits in the next step */ + end = TARGET_PAGE_ALIGN(start + len); + start = start & TARGET_PAGE_MASK; + + for (addr = start, len = end - start; + len != 0; + len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { + p = page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + return -1; + } + if (!(p->flags & PAGE_VALID)) { + return -1; + } + + if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { + return -1; + } + if (flags & PAGE_WRITE) { + if (!(p->flags & PAGE_WRITE_ORG)) { + return -1; + } + /* unprotect the page if it was put read-only because it + contains translated code */ + if (!(p->flags & PAGE_WRITE)) { + if (!page_unprotect(addr, 0)) { + return -1; + } + } + } + } + return 0; +} + +/* called from signal handler: invalidate the code and unprotect the + * page. Return 0 if the fault was not handled, 1 if it was handled, + * and 2 if it was handled but the caller must cause the TB to be + * immediately exited. (We can only return 2 if the 'pc' argument is + * non-zero.) + */ +int page_unprotect(target_ulong address, uintptr_t pc) +{ + unsigned int prot; + bool current_tb_invalidated; + PageDesc *p; + target_ulong host_start, host_end, addr; + + /* Technically this isn't safe inside a signal handler. However we + know this only ever happens in a synchronous SEGV handler, so in + practice it seems to be ok. */ + mmap_lock(); + + p = page_find(address >> TARGET_PAGE_BITS); + if (!p) { + mmap_unlock(); + return 0; + } + + /* if the page was really writable, then we change its + protection back to writable */ + if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { + host_start = address & qemu_host_page_mask; + host_end = host_start + qemu_host_page_size; + + prot = 0; + current_tb_invalidated = false; + for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { + p = page_find(addr >> TARGET_PAGE_BITS); + p->flags |= PAGE_WRITE; + prot |= p->flags; + + /* and since the content will be modified, we must invalidate + the corresponding translated code. */ + current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); +#ifdef DEBUG_TB_CHECK + tb_invalidate_check(addr); +#endif + } + mprotect((void *)g2h(host_start), qemu_host_page_size, + prot & PAGE_BITS); + + mmap_unlock(); + /* If current TB was invalidated return to main loop */ + return current_tb_invalidated ? 2 : 1; + } + mmap_unlock(); + return 0; +} +#endif /* CONFIG_USER_ONLY */ |