aboutsummaryrefslogtreecommitdiff
path: root/softmmu/icount.c
diff options
context:
space:
mode:
authorClaudio Fontana <cfontana@suse.de>2020-08-19 13:17:19 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2020-10-05 16:41:22 +0200
commit740b175973427bcfa32ad894bb1f83b96d184c28 (patch)
tree3613e83be5fd8620b369479b98e6ede5d5746a9a /softmmu/icount.c
parent0ac0b47c44b4be6cbce26777a1a5968cc8f025a5 (diff)
cpu-timers, icount: new modules
refactoring of cpus.c continues with cpu timer state extraction. cpu-timers: responsible for the softmmu cpu timers state, including cpu clocks and ticks. icount: counts the TCG instructions executed. As such it is specific to the TCG accelerator. Therefore, it is built only under CONFIG_TCG. One complication is due to qtest, which uses an icount field to warp time as part of qtest (qtest_clock_warp). In order to solve this problem, provide a separate counter for qtest. This requires fixing assumptions scattered in the code that qtest_enabled() implies icount_enabled(), checking each specific case. Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> [remove redundant initialization with qemu_spice_init] Reviewed-by: Alex Bennée <alex.bennee@linaro.org> [fix lingering calls to icount_get] Signed-off-by: Claudio Fontana <cfontana@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'softmmu/icount.c')
-rw-r--r--softmmu/icount.c492
1 files changed, 492 insertions, 0 deletions
diff --git a/softmmu/icount.c b/softmmu/icount.c
new file mode 100644
index 0000000000..0b815fe88f
--- /dev/null
+++ b/softmmu/icount.c
@@ -0,0 +1,492 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/cutils.h"
+#include "migration/vmstate.h"
+#include "qapi/error.h"
+#include "qemu/error-report.h"
+#include "exec/exec-all.h"
+#include "sysemu/cpus.h"
+#include "sysemu/qtest.h"
+#include "qemu/main-loop.h"
+#include "qemu/option.h"
+#include "qemu/seqlock.h"
+#include "sysemu/replay.h"
+#include "sysemu/runstate.h"
+#include "hw/core/cpu.h"
+#include "sysemu/cpu-timers.h"
+#include "sysemu/cpu-throttle.h"
+#include "timers-state.h"
+
+/*
+ * ICOUNT: Instruction Counter
+ *
+ * this module is split off from cpu-timers because the icount part
+ * is TCG-specific, and does not need to be built for other accels.
+ */
+static bool icount_sleep = true;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+
+/*
+ * 0 = Do not count executed instructions.
+ * 1 = Fixed conversion of insn to ns via "shift" option
+ * 2 = Runtime adaptive algorithm to compute shift
+ */
+int use_icount;
+
+static void icount_enable_precise(void)
+{
+ use_icount = 1;
+}
+
+static void icount_enable_adaptive(void)
+{
+ use_icount = 2;
+}
+
+/*
+ * The current number of executed instructions is based on what we
+ * originally budgeted minus the current state of the decrementing
+ * icount counters in extra/u16.low.
+ */
+static int64_t cpu_get_icount_executed(CPUState *cpu)
+{
+ return (cpu->icount_budget -
+ (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+static void cpu_update_icount_locked(CPUState *cpu)
+{
+ int64_t executed = cpu_get_icount_executed(cpu);
+ cpu->icount_budget -= executed;
+
+ qatomic_set_i64(&timers_state.qemu_icount,
+ timers_state.qemu_icount + executed);
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+void cpu_update_icount(CPUState *cpu)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cpu_update_icount_locked(cpu);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static int64_t cpu_get_icount_raw_locked(void)
+{
+ CPUState *cpu = current_cpu;
+
+ if (cpu && cpu->running) {
+ if (!cpu->can_do_io) {
+ error_report("Bad icount read");
+ exit(1);
+ }
+ /* Take into account what has run */
+ cpu_update_icount_locked(cpu);
+ }
+ /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
+ return qatomic_read_i64(&timers_state.qemu_icount);
+}
+
+static int64_t cpu_get_icount_locked(void)
+{
+ int64_t icount = cpu_get_icount_raw_locked();
+ return qatomic_read_i64(&timers_state.qemu_icount_bias) +
+ cpu_icount_to_ns(icount);
+}
+
+int64_t cpu_get_icount_raw(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_raw_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+/* Return the virtual CPU time, based on the instruction counter. */
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+int64_t cpu_icount_to_ns(int64_t icount)
+{
+ return icount << qatomic_read(&timers_state.icount_time_shift);
+}
+
+/*
+ * Correlation between real and virtual time is always going to be
+ * fairly approximate, so ignore small variation.
+ * When the guest is idle real and virtual time will be aligned in
+ * the IO wait loop.
+ */
+#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+
+ /* Protected by TimersState mutex. */
+ static int64_t last_delta;
+
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ cur_icount = cpu_get_icount_locked();
+
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && timers_state.icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ qatomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift - 1);
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ qatomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift + 1);
+ }
+ last_delta = delta;
+ qatomic_set_i64(&timers_state.qemu_icount_bias,
+ cur_icount - (timers_state.qemu_icount
+ << timers_state.icount_time_shift));
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+ icount_adjust();
+}
+
+int64_t qemu_icount_round(int64_t count)
+{
+ int shift = qatomic_read(&timers_state.icount_time_shift);
+ return (count + (1 << shift) - 1) >> shift;
+}
+
+static void icount_warp_rt(void)
+{
+ unsigned seq;
+ int64_t warp_start;
+
+ /*
+ * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
+ * changes from -1 to another value, so the race here is okay.
+ */
+ do {
+ seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ warp_start = timers_state.vm_clock_warp_start;
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
+
+ if (warp_start == -1) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (runstate_is_running()) {
+ int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ int64_t warp_delta;
+
+ warp_delta = clock - timers_state.vm_clock_warp_start;
+ if (icount_enabled() == 2) {
+ /*
+ * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
+ * far ahead of real time.
+ */
+ int64_t cur_icount = cpu_get_icount_locked();
+ int64_t delta = clock - cur_icount;
+ warp_delta = MIN(warp_delta, delta);
+ }
+ qatomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + warp_delta);
+ }
+ timers_state.vm_clock_warp_start = -1;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+
+ if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void icount_timer_cb(void *opaque)
+{
+ /*
+ * No need for a checkpoint because the timer already synchronizes
+ * with CHECKPOINT_CLOCK_VIRTUAL_RT.
+ */
+ icount_warp_rt();
+}
+
+void qemu_start_warp_timer(void)
+{
+ int64_t clock;
+ int64_t deadline;
+
+ assert(icount_enabled());
+
+ /*
+ * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ if (!all_cpu_threads_idle()) {
+ return;
+ }
+
+ if (qtest_enabled()) {
+ /* When testing, qtest commands advance icount. */
+ return;
+ }
+
+ replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
+ } else {
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
+ /*
+ * vCPU is sleeping and warp can't be started.
+ * It is probably a race condition: notification sent
+ * to vCPU was processed in advance and vCPU went to sleep.
+ * Therefore we have to wake it up for doing someting.
+ */
+ if (replay_has_checkpoint()) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+ return;
+ }
+ }
+
+ /* We want to use the earliest deadline from ALL vm_clocks */
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ ~QEMU_TIMER_ATTR_EXTERNAL);
+ if (deadline < 0) {
+ static bool notified;
+ if (!icount_sleep && !notified) {
+ warn_report("icount sleep disabled and no active timers");
+ notified = true;
+ }
+ return;
+ }
+
+ if (deadline > 0) {
+ /*
+ * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * QEMU_CLOCK_VIRTUAL.
+ */
+ if (!icount_sleep) {
+ /*
+ * We never let VCPUs sleep in no sleep icount mode.
+ * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
+ * to the next QEMU_CLOCK_VIRTUAL event and notify it.
+ * It is useful when we want a deterministic execution time,
+ * isolated from host latencies.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ qatomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + deadline);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ } else {
+ /*
+ * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
+ * "real" time, (related to the time left until the next event) has
+ * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
+ * This avoids that the warps are visible externally; for example,
+ * you will not be sending network packets continuously instead of
+ * every 100ms.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (timers_state.vm_clock_warp_start == -1
+ || timers_state.vm_clock_warp_start > clock) {
+ timers_state.vm_clock_warp_start = clock;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ timer_mod_anticipate(timers_state.icount_warp_timer,
+ clock + deadline);
+ }
+ } else if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+void qemu_account_warp_timer(void)
+{
+ if (!icount_enabled() || !icount_sleep) {
+ return;
+ }
+
+ /*
+ * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
+ return;
+ }
+
+ timer_del(timers_state.icount_warp_timer);
+ icount_warp_rt();
+}
+
+void configure_icount(QemuOpts *opts, Error **errp)
+{
+ const char *option = qemu_opt_get(opts, "shift");
+ bool sleep = qemu_opt_get_bool(opts, "sleep", true);
+ bool align = qemu_opt_get_bool(opts, "align", false);
+ long time_shift = -1;
+
+ if (!option) {
+ if (qemu_opt_get(opts, "align") != NULL) {
+ error_setg(errp, "Please specify shift option when using align");
+ }
+ return;
+ }
+
+ if (align && !sleep) {
+ error_setg(errp, "align=on and sleep=off are incompatible");
+ return;
+ }
+
+ if (strcmp(option, "auto") != 0) {
+ if (qemu_strtol(option, NULL, 0, &time_shift) < 0
+ || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
+ error_setg(errp, "icount: Invalid shift value");
+ return;
+ }
+ } else if (icount_align_option) {
+ error_setg(errp, "shift=auto and align=on are incompatible");
+ return;
+ } else if (!icount_sleep) {
+ error_setg(errp, "shift=auto and sleep=off are incompatible");
+ return;
+ }
+
+ icount_sleep = sleep;
+ if (icount_sleep) {
+ timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ icount_timer_cb, NULL);
+ }
+
+ icount_align_option = align;
+
+ if (time_shift >= 0) {
+ timers_state.icount_time_shift = time_shift;
+ icount_enable_precise();
+ return;
+ }
+
+ icount_enable_adaptive();
+
+ /*
+ * 125MIPS seems a reasonable initial guess at the guest speed.
+ * It will be corrected fairly quickly anyway.
+ */
+ timers_state.icount_time_shift = 3;
+
+ /*
+ * Have both realtime and virtual time triggers for speed adjustment.
+ * The realtime trigger catches emulated time passing too slowly,
+ * the virtual time trigger catches emulated time passing too fast.
+ * Realtime triggers occur even when idle, so use them less frequently
+ * than VM triggers.
+ */
+ timers_state.vm_clock_warp_start = -1;
+ timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
+ icount_adjust_rt, NULL);
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ icount_adjust_vm, NULL);
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+}