aboutsummaryrefslogtreecommitdiff
path: root/qemu-doc.texi
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2017-05-08 17:13:49 +0200
committerGerd Hoffmann <kraxel@redhat.com>2017-05-12 12:26:40 +0200
commita92ff8c123f45b3eb01a54f61d7be088e345612a (patch)
tree7962c089556c8ee59b188586d7889c0e94bcb9aa /qemu-doc.texi
parent76d20ea0f1b26ebd5da2f5fb2fdf3250cde887bb (diff)
qemu-doc: Update to use the new way of attaching USB devices
The preferred way of adding USB devices is via "-device" and "device_add" nowadays, so let's start to get rid of "-usbdevice" and "usb_add" in the documentation. While we're at it, also add the new USB devices there which have been added to QEMU during the last years, and get rid of the old "vendorid" and "productid" parameters of "-usbdevice serial" which have been removed in QEMU version 0.14.0 already. Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-id: 1494256429-31720-1-git-send-email-thuth@redhat.com Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Diffstat (limited to 'qemu-doc.texi')
-rw-r--r--qemu-doc.texi93
1 files changed, 52 insertions, 41 deletions
diff --git a/qemu-doc.texi b/qemu-doc.texi
index 794ab4a080..59d0ccb582 100644
--- a/qemu-doc.texi
+++ b/qemu-doc.texi
@@ -182,7 +182,7 @@ Gravis Ultrasound GF1 sound card
@item
CS4231A compatible sound card
@item
-PCI UHCI USB controller and a virtual USB hub.
+PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
@end itemize
SMP is supported with up to 255 CPUs.
@@ -1357,10 +1357,10 @@ monitor (@pxref{pcsys_keys}).
@node pcsys_usb
@section USB emulation
-QEMU emulates a PCI UHCI USB controller. You can virtually plug
-virtual USB devices or real host USB devices (experimental, works only
-on Linux hosts). QEMU will automatically create and connect virtual USB hubs
-as necessary to connect multiple USB devices.
+QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
+plug virtual USB devices or real host USB devices (only works with certain
+host operating systems). QEMU will automatically create and connect virtual
+USB hubs as necessary to connect multiple USB devices.
@menu
* usb_devices::
@@ -1369,53 +1369,64 @@ as necessary to connect multiple USB devices.
@node usb_devices
@subsection Connecting USB devices
-USB devices can be connected with the @option{-usbdevice} commandline option
-or the @code{usb_add} monitor command. Available devices are:
+USB devices can be connected with the @option{-device usb-...} command line
+option or the @code{device_add} monitor command. Available devices are:
@table @code
-@item mouse
+@item usb-mouse
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
-@item tablet
+@item usb-tablet
Pointer device that uses absolute coordinates (like a touchscreen).
This means QEMU is able to report the mouse position without having
to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
-@item disk:@var{file}
-Mass storage device based on @var{file} (@pxref{disk_images})
-@item host:@var{bus.addr}
-Pass through the host device identified by @var{bus.addr}
-(Linux only)
-@item host:@var{vendor_id:product_id}
-Pass through the host device identified by @var{vendor_id:product_id}
-(Linux only)
-@item wacom-tablet
+@item usb-storage,drive=@var{drive_id}
+Mass storage device backed by @var{drive_id} (@pxref{disk_images})
+@item usb-uas
+USB attached SCSI device, see
+@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
+for details
+@item usb-bot
+Bulk-only transport storage device, see
+@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
+for details here, too
+@item usb-mtp,x-root=@var{dir}
+Media transfer protocol device, using @var{dir} as root of the file tree
+that is presented to the guest.
+@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
+Pass through the host device identified by @var{bus} and @var{addr}
+@item usb-host,vendorid=@var{vendor},productid=@var{product}
+Pass through the host device identified by @var{vendor} and @var{product} ID
+@item usb-wacom-tablet
Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
above but it can be used with the tslib library because in addition to touch
coordinates it reports touch pressure.
-@item keyboard
+@item usb-kbd
Standard USB keyboard. Will override the PS/2 keyboard (if present).
-@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
+@item usb-serial,chardev=@var{id}
Serial converter. This emulates an FTDI FT232BM chip connected to host character
-device @var{dev}. The available character devices are the same as for the
-@code{-serial} option. The @code{vendorid} and @code{productid} options can be
-used to override the default 0403:6001. For instance,
-@example
-usb_add serial:productid=FA00:tcp:192.168.0.2:4444
-@end example
-will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
-serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
-@item braille
+device @var{id}.
+@item usb-braille,chardev=@var{id}
Braille device. This will use BrlAPI to display the braille output on a real
-or fake device.
-@item net:@var{options}
-Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
-specifies NIC options as with @code{-net nic,}@var{options} (see description).
+or fake device referenced by @var{id}.
+@item usb-net[,netdev=@var{id}]
+Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
+specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
For instance, user-mode networking can be used with
@example
-qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
-@end example
-Currently this cannot be used in machines that support PCI NICs.
-@item bt[:@var{hci-type}]
-Bluetooth dongle whose type is specified in the same format as with
+qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
+@end example
+@item usb-ccid
+Smartcard reader device
+@item usb-audio
+USB audio device
+@item usb-bt-dongle
+Bluetooth dongle for the transport layer of HCI. It is connected to HCI
+scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
+Note that the syntax for the @code{-device usb-bt-dongle} option is not as
+useful yet as it was with the legacy @code{-usbdevice} option. So to
+configure an USB bluetooth device, you might need to use
+"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
+bluetooth dongle whose type is specified in the same format as with
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI. Example
@@ -1460,11 +1471,11 @@ hubs, it won't work).
@item Add the device in QEMU by using:
@example
-usb_add host:1234:5678
+device_add usb-host,vendorid=0x1234,productid=0x5678
@end example
-Normally the guest OS should report that a new USB device is
-plugged. You can use the option @option{-usbdevice} to do the same.
+Normally the guest OS should report that a new USB device is plugged.
+You can use the option @option{-device usb-host,...} to do the same.
@item Now you can try to use the host USB device in QEMU.