diff options
author | Cédric Le Goater <clg@kaod.org> | 2018-12-09 20:45:53 +0100 |
---|---|---|
committer | David Gibson <david@gibson.dropbear.id.au> | 2018-12-21 09:29:12 +1100 |
commit | 207d9fe98510eaac575bfde8d1be58137e9a22ff (patch) | |
tree | e30eb6504a5314034c23aeb2c7a35e57c008a5c0 /include/hw/ppc/xive.h | |
parent | 002686be42784fdce4c1c8ecd1987ddf740cab77 (diff) |
ppc/xive: introduce the XIVE interrupt thread context
Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:
- hypervisor exception,
- O/S exception
- Event-Based Branch (EBB)
- msgsnd (doorbell).
Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :
- Interrupt Priority Register (PIPR)
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.
The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Diffstat (limited to 'include/hw/ppc/xive.h')
-rw-r--r-- | include/hw/ppc/xive.h | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/include/hw/ppc/xive.h b/include/hw/ppc/xive.h index 014f64aa98..1e823a4c64 100644 --- a/include/hw/ppc/xive.h +++ b/include/hw/ppc/xive.h @@ -367,4 +367,48 @@ typedef struct XiveENDSource { void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon); void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon); +/* + * XIVE Thread interrupt Management (TM) context + */ + +#define TYPE_XIVE_TCTX "xive-tctx" +#define XIVE_TCTX(obj) OBJECT_CHECK(XiveTCTX, (obj), TYPE_XIVE_TCTX) + +/* + * XIVE Thread interrupt Management register rings : + * + * QW-0 User event-based exception state + * QW-1 O/S OS context for priority management, interrupt acks + * QW-2 Pool hypervisor pool context for virtual processors dispatched + * QW-3 Physical physical thread context and security context + */ +#define XIVE_TM_RING_COUNT 4 +#define XIVE_TM_RING_SIZE 0x10 + +typedef struct XiveTCTX { + DeviceState parent_obj; + + CPUState *cs; + qemu_irq output; + + uint8_t regs[XIVE_TM_RING_COUNT * XIVE_TM_RING_SIZE]; +} XiveTCTX; + +/* + * XIVE Thread Interrupt Management Aera (TIMA) + * + * This region gives access to the registers of the thread interrupt + * management context. It is four page wide, each page providing a + * different view of the registers. The page with the lower offset is + * the most privileged and gives access to the entire context. + */ +#define XIVE_TM_HW_PAGE 0x0 +#define XIVE_TM_HV_PAGE 0x1 +#define XIVE_TM_OS_PAGE 0x2 +#define XIVE_TM_USER_PAGE 0x3 + +extern const MemoryRegionOps xive_tm_ops; + +void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon); + #endif /* PPC_XIVE_H */ |