aboutsummaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2019-05-30 15:08:00 +0100
committerPeter Maydell <peter.maydell@linaro.org>2019-05-30 15:08:00 +0100
commit60905286cb5150de854e08279bca7dfc4b549e91 (patch)
tree1d168061ed2308a88c0652e52d3227b65a08469b /docs
parent48a8b399619cf3bb745a2e052f9fec142f14d75d (diff)
parentce4b1b56852ea741170ae85d3b8c0771c1ca7c9e (diff)
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190529' into staging
ppc patch queue 2019-05-29 Next pull request against qemu-4.1. Highlights: * KVM accelerated support for the XIVE interrupt controller in PAPR guests * A number of TCG vector fixes * Fixes for the PReP / 40p machine * Improvements to make check-tcg test coverage Other than that it's just a bunch of assorted fixes, cleanups and minor improvements. This supersedes both the pull request dated 2019-05-21 and the one dated 2019-05-22. I've dropped one hunk which I think may have caused the check-tcg failure that Peter saw (by enabling the ppc64abi32 build, which I think has been broken for ages). I'm not entirely certain, since I haven't reproduced exactly the same failure. # gpg: Signature made Wed 29 May 2019 07:49:04 BST # gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392 # gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full] # gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full] # gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full] # gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown] # Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392 * remotes/dgibson/tags/ppc-for-4.1-20190529: (44 commits) ppc/pnv: add dummy XSCOM registers for PRD initialization ppc/pnv: introduce new skiboot platform properties spapr: Don't migrate the hpt_maxpagesize cap to older machine types spapr: change default interrupt mode to 'dual' spapr/xive: fix multiple resets when using the 'dual' interrupt mode docs: provide documentation on the POWER9 XIVE interrupt controller spapr/irq: add KVM support to the 'dual' machine ppc/xics: fix irq priority in ics_set_irq_type() spapr/irq: initialize the IRQ device only once spapr/irq: introduce a spapr_irq_init_device() helper spapr: check for the activation of the KVM IRQ device spapr: introduce routines to delete the KVM IRQ device sysbus: add a sysbus_mmio_unmap() helper spapr/xive: activate KVM support spapr/xive: add migration support for KVM spapr/xive: introduce a VM state change handler spapr/xive: add state synchronization with KVM spapr/xive: add hcall support when under KVM spapr/xive: add KVM support spapr: Print out extra hints when CAS negotiation of interrupt mode fails ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'docs')
-rw-r--r--docs/index.rst1
-rw-r--r--docs/specs/index.rst13
-rw-r--r--docs/specs/ppc-spapr-xive.rst174
-rw-r--r--docs/specs/ppc-xive.rst199
4 files changed, 387 insertions, 0 deletions
diff --git a/docs/index.rst b/docs/index.rst
index 3690955dd1..baa5791c17 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -12,4 +12,5 @@ Welcome to QEMU's documentation!
interop/index
devel/index
+ specs/index
diff --git a/docs/specs/index.rst b/docs/specs/index.rst
new file mode 100644
index 0000000000..2e927519c2
--- /dev/null
+++ b/docs/specs/index.rst
@@ -0,0 +1,13 @@
+. This is the top level page for the 'specs' manual
+
+
+QEMU full-system emulation guest hardware specifications
+========================================================
+
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ xive
diff --git a/docs/specs/ppc-spapr-xive.rst b/docs/specs/ppc-spapr-xive.rst
new file mode 100644
index 0000000000..539ce7ca4e
--- /dev/null
+++ b/docs/specs/ppc-spapr-xive.rst
@@ -0,0 +1,174 @@
+XIVE for sPAPR (pseries machines)
+=================================
+
+The POWER9 processor comes with a new interrupt controller
+architecture, called XIVE as "eXternal Interrupt Virtualization
+Engine". It supports a larger number of interrupt sources and offers
+virtualization features which enables the HW to deliver interrupts
+directly to virtual processors without hypervisor assistance.
+
+A QEMU ``pseries`` machine (which is PAPR compliant) using POWER9
+processors can run under two interrupt modes:
+
+- *Legacy Compatibility Mode*
+
+ the hypervisor provides identical interfaces and similar
+ functionality to PAPR+ Version 2.7. This is the default mode
+
+ It is also referred as *XICS* in QEMU.
+
+- *XIVE native exploitation mode*
+
+ the hypervisor provides new interfaces to manage the XIVE control
+ structures, and provides direct control for interrupt management
+ through MMIO pages.
+
+Which interrupt modes can be used by the machine is negotiated with
+the guest O/S during the Client Architecture Support negotiation
+sequence. The two modes are mutually exclusive.
+
+Both interrupt mode share the same IRQ number space. See below for the
+layout.
+
+CAS Negotiation
+---------------
+
+QEMU advertises the supported interrupt modes in the device tree
+property "ibm,arch-vec-5-platform-support" in byte 23 and the OS
+Selection for XIVE is indicated in the "ibm,architecture-vec-5"
+property byte 23.
+
+The interrupt modes supported by the machine depend on the CPU type
+(POWER9 is required for XIVE) but also on the machine property
+``ic-mode`` which can be set on the command line. It can take the
+following values: ``xics``, ``xive``, ``dual`` and currently ``xics``
+is the default but it may change in the future.
+
+The choosen interrupt mode is activated after a reconfiguration done
+in a machine reset.
+
+XIVE Device tree properties
+---------------------------
+
+The properties for the PAPR interrupt controller node when the *XIVE
+native exploitation mode* is selected shoud contain:
+
+- ``device_type``
+
+ value should be "power-ivpe".
+
+- ``compatible``
+
+ value should be "ibm,power-ivpe".
+
+- ``reg``
+
+ contains the base address and size of the thread interrupt
+ managnement areas (TIMA), for the User level and for the Guest OS
+ level. Only the Guest OS level is taken into account today.
+
+- ``ibm,xive-eq-sizes``
+
+ the size of the event queues. One cell per size supported, contains
+ log2 of size, in ascending order.
+
+- ``ibm,xive-lisn-ranges``
+
+ the IRQ interrupt number ranges assigned to the guest for the IPIs.
+
+The root node also exports :
+
+- ``ibm,plat-res-int-priorities``
+
+ contains a list of priorities that the hypervisor has reserved for
+ its own use.
+
+IRQ number space
+----------------
+
+IRQ Number space of the ``pseries`` machine is 8K wide and is the same
+for both interrupt mode. The different ranges are defined as follow :
+
+- ``0x0000 .. 0x0FFF`` 4K CPU IPIs (only used under XIVE)
+- ``0x1000 .. 0x1000`` 1 EPOW
+- ``0x1001 .. 0x1001`` 1 HOTPLUG
+- ``0x1100 .. 0x11FF`` 256 VIO devices
+- ``0x1200 .. 0x127F`` 32 PHBs devices
+- ``0x1280 .. 0x12FF`` unused
+- ``0x1300 .. 0x1FFF`` PHB MSIs
+
+Monitoring XIVE
+---------------
+
+The state of the XIVE interrupt controller can be queried through the
+monitor commands ``info pic``. The output comes in two parts.
+
+First, the state of the thread interrupt context registers is dumped
+for each CPU :
+
+::
+
+ (qemu) info pic
+ CPU[0000]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR W2
+ CPU[0000]: USER 00 00 00 00 00 00 00 00 00000000
+ CPU[0000]: OS 00 ff 00 00 ff 00 ff ff 80000400
+ CPU[0000]: POOL 00 00 00 00 00 00 00 00 00000000
+ CPU[0000]: PHYS 00 00 00 00 00 00 00 ff 00000000
+ ...
+
+In the case of a ``pseries`` machine, QEMU acts as the hypervisor and only
+the O/S and USER register rings make sense. ``W2`` contains the vCPU CAM
+line which is set to the VP identifier.
+
+Then comes the routing information which aggregates the EAS and the
+END configuration:
+
+::
+
+ ...
+ LISN PQ EISN CPU/PRIO EQ
+ 00000000 MSI -- 00000010 0/6 380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
+ 00000001 MSI -- 00000010 1/6 305/16384 @1fc230000 ^1 [ 80000010 ... ]
+ 00000002 MSI -- 00000010 2/6 220/16384 @1fc2f0000 ^1 [ 80000010 ... ]
+ 00000003 MSI -- 00000010 3/6 201/16384 @1fc390000 ^1 [ 80000010 ... ]
+ 00000004 MSI -Q M 00000000
+ 00000005 MSI -Q M 00000000
+ 00000006 MSI -Q M 00000000
+ 00000007 MSI -Q M 00000000
+ 00001000 MSI -- 00000012 0/6 380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
+ 00001001 MSI -- 00000013 0/6 380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
+ 00001100 MSI -- 00000100 1/6 305/16384 @1fc230000 ^1 [ 80000010 ... ]
+ 00001101 MSI -Q M 00000000
+ 00001200 LSI -Q M 00000000
+ 00001201 LSI -Q M 00000000
+ 00001202 LSI -Q M 00000000
+ 00001203 LSI -Q M 00000000
+ 00001300 MSI -- 00000102 1/6 305/16384 @1fc230000 ^1 [ 80000010 ... ]
+ 00001301 MSI -- 00000103 2/6 220/16384 @1fc2f0000 ^1 [ 80000010 ... ]
+ 00001302 MSI -- 00000104 3/6 201/16384 @1fc390000 ^1 [ 80000010 ... ]
+
+The source information and configuration:
+
+- The ``LISN`` column outputs the interrupt number of the source in
+ range ``[ 0x0 ... 0x1FFF ]`` and its type : ``MSI`` or ``LSI``
+- The ``PQ`` column reflects the state of the PQ bits of the source :
+
+ - ``--`` source is ready to take events
+ - ``P-`` an event was sent and an EOI is PENDING
+ - ``PQ`` an event was QUEUED
+ - ``-Q`` source is OFF
+
+ a ``M`` indicates that source is *MASKED* at the EAS level,
+
+The targeting configuration :
+
+- The ``EISN`` column is the event data that will be queued in the event
+ queue of the O/S.
+- The ``CPU/PRIO`` column is the tuple defining the CPU number and
+ priority queue serving the source.
+- The ``EQ`` column outputs :
+
+ - the current index of the event queue/ the max number of entries
+ - the O/S event queue address
+ - the toggle bit
+ - the last entries that were pushed in the event queue.
diff --git a/docs/specs/ppc-xive.rst b/docs/specs/ppc-xive.rst
new file mode 100644
index 0000000000..b997dc0629
--- /dev/null
+++ b/docs/specs/ppc-xive.rst
@@ -0,0 +1,199 @@
+================================
+POWER9 XIVE interrupt controller
+================================
+
+The POWER9 processor comes with a new interrupt controller
+architecture, called XIVE as "eXternal Interrupt Virtualization
+Engine".
+
+Compared to the previous architecture, the main characteristics of
+XIVE are to support a larger number of interrupt sources and to
+deliver interrupts directly to virtual processors without hypervisor
+assistance. This removes the context switches required for the
+delivery process.
+
+
+XIVE architecture
+=================
+
+The XIVE IC is composed of three sub-engines, each taking care of a
+processing layer of external interrupts:
+
+- Interrupt Virtualization Source Engine (IVSE), or Source Controller
+ (SC). These are found in PCI PHBs, in the PSI host bridge
+ controller, but also inside the main controller for the core IPIs
+ and other sub-chips (NX, CAP, NPU) of the chip/processor. They are
+ configured to feed the IVRE with events.
+- Interrupt Virtualization Routing Engine (IVRE) or Virtualization
+ Controller (VC). It handles event coalescing and perform interrupt
+ routing by matching an event source number with an Event
+ Notification Descriptor (END).
+- Interrupt Virtualization Presentation Engine (IVPE) or Presentation
+ Controller (PC). It maintains the interrupt context state of each
+ thread and handles the delivery of the external interrupt to the
+ thread.
+
+::
+
+ XIVE Interrupt Controller
+ +------------------------------------+ IPIs
+ | +---------+ +---------+ +--------+ | +-------+
+ | |IVRE | |Common Q | |IVPE |----> | CORES |
+ | | esb | | | | |----> | |
+ | | eas | | Bridge | | tctx |----> | |
+ | |SC end | | | | nvt | | | |
+ +------+ | +---------+ +----+----+ +--------+ | +-+-+-+-+
+ | RAM | +------------------|-----------------+ | | |
+ | | | | | |
+ | | | | | |
+ | | +--------------------v------------------------v-v-v--+ other
+ | <--+ Power Bus +--> chips
+ | esb | +---------+-----------------------+------------------+
+ | eas | | |
+ | end | +--|------+ |
+ | nvt | +----+----+ | +----+----+
+ +------+ |IVSE | | |IVSE |
+ | | | | |
+ | PQ-bits | | | PQ-bits |
+ | local |-+ | in VC |
+ +---------+ +---------+
+ PCIe NX,NPU,CAPI
+
+
+ PQ-bits: 2 bits source state machine (P:pending Q:queued)
+ esb: Event State Buffer (Array of PQ bits in an IVSE)
+ eas: Event Assignment Structure
+ end: Event Notification Descriptor
+ nvt: Notification Virtual Target
+ tctx: Thread interrupt Context registers
+
+
+
+XIVE internal tables
+--------------------
+
+Each of the sub-engines uses a set of tables to redirect interrupts
+from event sources to CPU threads.
+
+::
+
+ +-------+
+ User or O/S | EQ |
+ or +------>|entries|
+ Hypervisor | | .. |
+ Memory | +-------+
+ | ^
+ | |
+ +-------------------------------------------------+
+ | |
+ Hypervisor +------+ +---+--+ +---+--+ +------+
+ Memory | ESB | | EAT | | ENDT | | NVTT |
+ (skiboot) +----+-+ +----+-+ +----+-+ +------+
+ ^ | ^ | ^ | ^
+ | | | | | | |
+ +-------------------------------------------------+
+ | | | | | | |
+ | | | | | | |
+ +----|--|--------|--|--------|--|-+ +-|-----+ +------+
+ | | | | | | | | | | tctx| |Thread|
+ IPI or ---+ + v + v + v |---| + .. |-----> |
+ HW events | | | | | |
+ | IVRE | | IVPE | +------+
+ +---------------------------------+ +-------+
+
+
+The IVSE have a 2-bits state machine, P for pending and Q for queued,
+for each source that allows events to be triggered. They are stored in
+an Event State Buffer (ESB) array and can be controlled by MMIOs.
+
+If the event is let through, the IVRE looks up in the Event Assignment
+Structure (EAS) table for an Event Notification Descriptor (END)
+configured for the source. Each Event Notification Descriptor defines
+a notification path to a CPU and an in-memory Event Queue, in which
+will be enqueued an EQ data for the O/S to pull.
+
+The IVPE determines if a Notification Virtual Target (NVT) can handle
+the event by scanning the thread contexts of the VCPUs dispatched on
+the processor HW threads. It maintains the interrupt context state of
+each thread in a NVT table.
+
+XIVE thread interrupt context
+-----------------------------
+
+The XIVE presenter can generate four different exceptions to its
+HW threads:
+
+- hypervisor exception
+- O/S exception
+- Event-Based Branch (user level)
+- msgsnd (doorbell)
+
+Each exception has a state independent from the others called a Thread
+Interrupt Management context. This context is a set of registers which
+lets the thread handle priority management and interrupt
+acknowledgment among other things. The most important ones being :
+
+- Interrupt Priority Register (PIPR)
+- Interrupt Pending Buffer (IPB)
+- Current Processor Priority (CPPR)
+- Notification Source Register (NSR)
+
+TIMA
+~~~~
+
+The Thread Interrupt Management registers are accessible through a
+specific MMIO region, called the Thread Interrupt Management Area
+(TIMA), four aligned pages, each exposing a different view of the
+registers. First page (page address ending in ``0b00``) gives access
+to the entire context and is reserved for the ring 0 view for the
+physical thread context. The second (page address ending in ``0b01``)
+is for the hypervisor, ring 1 view. The third (page address ending in
+``0b10``) is for the operating system, ring 2 view. The fourth (page
+address ending in ``0b11``) is for user level, ring 3 view.
+
+Interrupt flow from an O/S perspective
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+After an event data has been enqueued in the O/S Event Queue, the IVPE
+raises the bit corresponding to the priority of the pending interrupt
+in the register IBP (Interrupt Pending Buffer) to indicate that an
+event is pending in one of the 8 priority queues. The Pending
+Interrupt Priority Register (PIPR) is also updated using the IPB. This
+register represent the priority of the most favored pending
+notification.
+
+The PIPR is then compared to the the Current Processor Priority
+Register (CPPR). If it is more favored (numerically less than), the
+CPU interrupt line is raised and the EO bit of the Notification Source
+Register (NSR) is updated to notify the presence of an exception for
+the O/S. The O/S acknowledges the interrupt with a special load in the
+Thread Interrupt Management Area.
+
+The O/S handles the interrupt and when done, performs an EOI using a
+MMIO operation on the ESB management page of the associate source.
+
+Overview of the QEMU models for XIVE
+====================================
+
+The XiveSource models the IVSE in general, internal and external. It
+handles the source ESBs and the MMIO interface to control them.
+
+The XiveNotifier is a small helper interface interconnecting the
+XiveSource to the XiveRouter.
+
+The XiveRouter is an abstract model acting as a combined IVRE and
+IVPE. It routes event notifications using the EAS and END tables to
+the IVPE sub-engine which does a CAM scan to find a CPU to deliver the
+exception. Storage should be provided by the inheriting classes.
+
+XiveEnDSource is a special source object. It exposes the END ESB MMIOs
+of the Event Queues which are used for coalescing event notifications
+and for escalation. Not used on the field, only to sync the EQ cache
+in OPAL.
+
+Finally, the XiveTCTX contains the interrupt state context of a thread,
+four sets of registers, one for each exception that can be delivered
+to a CPU. These contexts are scanned by the IVPE to find a matching VP
+when a notification is triggered. It also models the Thread Interrupt
+Management Area (TIMA), which exposes the thread context registers to
+the CPU for interrupt management.