aboutsummaryrefslogtreecommitdiff
path: root/block/qed-l2-cache.c
diff options
context:
space:
mode:
authorStefan Hajnoczi <stefanha@linux.vnet.ibm.com>2010-12-06 16:08:01 +0000
committerKevin Wolf <kwolf@redhat.com>2010-12-17 16:11:04 +0100
commit298800cae72eb2a549374189e87615b2b0b79262 (patch)
treefadedcd0842fa60989078a4aa8c1959a27adbbd0 /block/qed-l2-cache.c
parent75411d236d93d79d8052e0116c3eeebe23e2778b (diff)
qed: Table, L2 cache, and cluster functions
This patch adds code to look up data cluster offsets in the image via the L1/L2 tables. The L2 tables are writethrough cached in memory for performance (each read/write requires a lookup so it is essential to cache the tables). With cluster lookup code in place it is possible to implement bdrv_is_allocated() to query the number of contiguous allocated/unallocated clusters. Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Diffstat (limited to 'block/qed-l2-cache.c')
-rw-r--r--block/qed-l2-cache.c173
1 files changed, 173 insertions, 0 deletions
diff --git a/block/qed-l2-cache.c b/block/qed-l2-cache.c
new file mode 100644
index 0000000000..57518a4e7f
--- /dev/null
+++ b/block/qed-l2-cache.c
@@ -0,0 +1,173 @@
+/*
+ * QEMU Enhanced Disk Format L2 Cache
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+/*
+ * L2 table cache usage is as follows:
+ *
+ * An open image has one L2 table cache that is used to avoid accessing the
+ * image file for recently referenced L2 tables.
+ *
+ * Cluster offset lookup translates the logical offset within the block device
+ * to a cluster offset within the image file. This is done by indexing into
+ * the L1 and L2 tables which store cluster offsets. It is here where the L2
+ * table cache serves up recently referenced L2 tables.
+ *
+ * If there is a cache miss, that L2 table is read from the image file and
+ * committed to the cache. Subsequent accesses to that L2 table will be served
+ * from the cache until the table is evicted from the cache.
+ *
+ * L2 tables are also committed to the cache when new L2 tables are allocated
+ * in the image file. Since the L2 table cache is write-through, the new L2
+ * table is first written out to the image file and then committed to the
+ * cache.
+ *
+ * Multiple I/O requests may be using an L2 table cache entry at any given
+ * time. That means an entry may be in use across several requests and
+ * reference counting is needed to free the entry at the correct time. In
+ * particular, an entry evicted from the cache will only be freed once all
+ * references are dropped.
+ *
+ * An in-flight I/O request will hold a reference to a L2 table cache entry for
+ * the period during which it needs to access the L2 table. This includes
+ * cluster offset lookup, L2 table allocation, and L2 table update when a new
+ * data cluster has been allocated.
+ *
+ * An interesting case occurs when two requests need to access an L2 table that
+ * is not in the cache. Since the operation to read the table from the image
+ * file takes some time to complete, both requests may see a cache miss and
+ * start reading the L2 table from the image file. The first to finish will
+ * commit its L2 table into the cache. When the second tries to commit its
+ * table will be deleted in favor of the existing cache entry.
+ */
+
+#include "trace.h"
+#include "qed.h"
+
+/* Each L2 holds 2GB so this let's us fully cache a 100GB disk */
+#define MAX_L2_CACHE_SIZE 50
+
+/**
+ * Initialize the L2 cache
+ */
+void qed_init_l2_cache(L2TableCache *l2_cache)
+{
+ QTAILQ_INIT(&l2_cache->entries);
+ l2_cache->n_entries = 0;
+}
+
+/**
+ * Free the L2 cache
+ */
+void qed_free_l2_cache(L2TableCache *l2_cache)
+{
+ CachedL2Table *entry, *next_entry;
+
+ QTAILQ_FOREACH_SAFE(entry, &l2_cache->entries, node, next_entry) {
+ qemu_vfree(entry->table);
+ qemu_free(entry);
+ }
+}
+
+/**
+ * Allocate an uninitialized entry from the cache
+ *
+ * The returned entry has a reference count of 1 and is owned by the caller.
+ * The caller must allocate the actual table field for this entry and it must
+ * be freeable using qemu_vfree().
+ */
+CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache)
+{
+ CachedL2Table *entry;
+
+ entry = qemu_mallocz(sizeof(*entry));
+ entry->ref++;
+
+ trace_qed_alloc_l2_cache_entry(l2_cache, entry);
+
+ return entry;
+}
+
+/**
+ * Decrease an entry's reference count and free if necessary when the reference
+ * count drops to zero.
+ */
+void qed_unref_l2_cache_entry(CachedL2Table *entry)
+{
+ if (!entry) {
+ return;
+ }
+
+ entry->ref--;
+ trace_qed_unref_l2_cache_entry(entry, entry->ref);
+ if (entry->ref == 0) {
+ qemu_vfree(entry->table);
+ qemu_free(entry);
+ }
+}
+
+/**
+ * Find an entry in the L2 cache. This may return NULL and it's up to the
+ * caller to satisfy the cache miss.
+ *
+ * For a cached entry, this function increases the reference count and returns
+ * the entry.
+ */
+CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset)
+{
+ CachedL2Table *entry;
+
+ QTAILQ_FOREACH(entry, &l2_cache->entries, node) {
+ if (entry->offset == offset) {
+ trace_qed_find_l2_cache_entry(l2_cache, entry, offset, entry->ref);
+ entry->ref++;
+ return entry;
+ }
+ }
+ return NULL;
+}
+
+/**
+ * Commit an L2 cache entry into the cache. This is meant to be used as part of
+ * the process to satisfy a cache miss. A caller would allocate an entry which
+ * is not actually in the L2 cache and then once the entry was valid and
+ * present on disk, the entry can be committed into the cache.
+ *
+ * Since the cache is write-through, it's important that this function is not
+ * called until the entry is present on disk and the L1 has been updated to
+ * point to the entry.
+ *
+ * N.B. This function steals a reference to the l2_table from the caller so the
+ * caller must obtain a new reference by issuing a call to
+ * qed_find_l2_cache_entry().
+ */
+void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table)
+{
+ CachedL2Table *entry;
+
+ entry = qed_find_l2_cache_entry(l2_cache, l2_table->offset);
+ if (entry) {
+ qed_unref_l2_cache_entry(entry);
+ qed_unref_l2_cache_entry(l2_table);
+ return;
+ }
+
+ if (l2_cache->n_entries >= MAX_L2_CACHE_SIZE) {
+ entry = QTAILQ_FIRST(&l2_cache->entries);
+ QTAILQ_REMOVE(&l2_cache->entries, entry, node);
+ l2_cache->n_entries--;
+ qed_unref_l2_cache_entry(entry);
+ }
+
+ l2_cache->n_entries++;
+ QTAILQ_INSERT_TAIL(&l2_cache->entries, l2_table, node);
+}