diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2018-08-14 17:17:19 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2018-08-14 17:17:19 +0100 |
commit | 20cb6ae4724d05cbbda0d9ceec7e357d646b6886 (patch) | |
tree | 729732c599f12ada3c5ad9182bb49892e959fcc7 /accel/tcg | |
parent | 9739e3767af19096898d63eb9f2f0ff5004797d2 (diff) |
accel/tcg: Return -1 for execution from MMIO regions in get_page_addr_code()
Now that all the callers can handle get_page_addr_code() returning -1,
remove all the code which tries to handle execution from MMIO regions
or small-MMU-region RAM areas. This will mean that we can correctly
execute from these areas, rather than ending up either aborting QEMU
or delivering an incorrect guest exception.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20180710160013.26559-6-peter.maydell@linaro.org
Diffstat (limited to 'accel/tcg')
-rw-r--r-- | accel/tcg/cputlb.c | 95 |
1 files changed, 10 insertions, 85 deletions
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c index 51b1193044..754795ff25 100644 --- a/accel/tcg/cputlb.c +++ b/accel/tcg/cputlb.c @@ -741,39 +741,6 @@ void tlb_set_page(CPUState *cpu, target_ulong vaddr, prot, mmu_idx, size); } -static void report_bad_exec(CPUState *cpu, target_ulong addr) -{ - /* Accidentally executing outside RAM or ROM is quite common for - * several user-error situations, so report it in a way that - * makes it clear that this isn't a QEMU bug and provide suggestions - * about what a user could do to fix things. - */ - error_report("Trying to execute code outside RAM or ROM at 0x" - TARGET_FMT_lx, addr); - error_printf("This usually means one of the following happened:\n\n" - "(1) You told QEMU to execute a kernel for the wrong machine " - "type, and it crashed on startup (eg trying to run a " - "raspberry pi kernel on a versatilepb QEMU machine)\n" - "(2) You didn't give QEMU a kernel or BIOS filename at all, " - "and QEMU executed a ROM full of no-op instructions until " - "it fell off the end\n" - "(3) Your guest kernel has a bug and crashed by jumping " - "off into nowhere\n\n" - "This is almost always one of the first two, so check your " - "command line and that you are using the right type of kernel " - "for this machine.\n" - "If you think option (3) is likely then you can try debugging " - "your guest with the -d debug options; in particular " - "-d guest_errors will cause the log to include a dump of the " - "guest register state at this point.\n\n" - "Execution cannot continue; stopping here.\n\n"); - - /* Report also to the logs, with more detail including register dump */ - qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " - "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); - log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); -} - static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) { ram_addr_t ram_addr; @@ -963,7 +930,6 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) MemoryRegionSection *section; CPUState *cpu = ENV_GET_CPU(env); CPUIOTLBEntry *iotlbentry; - hwaddr physaddr, mr_offset; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); mmu_idx = cpu_mmu_index(env, true); @@ -977,65 +943,24 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) { /* * This is a TLB_RECHECK access, where the MMU protection - * covers a smaller range than a target page, and we must - * repeat the MMU check here. This tlb_fill() call might - * longjump out if this access should cause a guest exception. - */ - int index; - target_ulong tlb_addr; - - tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0); - - index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); - tlb_addr = env->tlb_table[mmu_idx][index].addr_code; - if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) { - /* RAM access. We can't handle this, so for now just stop */ - cpu_abort(cpu, "Unable to handle guest executing from RAM within " - "a small MPU region at 0x" TARGET_FMT_lx, addr); - } - /* - * Fall through to handle IO accesses (which will almost certainly - * also result in failure) + * covers a smaller range than a target page. Return -1 to + * indicate that we cannot simply execute from RAM here; + * we will perform the necessary repeat of the MMU check + * when the "execute a single insn" code performs the + * load of the guest insn. */ + return -1; } iotlbentry = &env->iotlb[mmu_idx][index]; section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); mr = section->mr; if (memory_region_is_unassigned(mr)) { - qemu_mutex_lock_iothread(); - if (memory_region_request_mmio_ptr(mr, addr)) { - qemu_mutex_unlock_iothread(); - /* A MemoryRegion is potentially added so re-run the - * get_page_addr_code. - */ - return get_page_addr_code(env, addr); - } - qemu_mutex_unlock_iothread(); - - /* Give the new-style cpu_transaction_failed() hook first chance - * to handle this. - * This is not the ideal place to detect and generate CPU - * exceptions for instruction fetch failure (for instance - * we don't know the length of the access that the CPU would - * use, and it would be better to go ahead and try the access - * and use the MemTXResult it produced). However it is the - * simplest place we have currently available for the check. - */ - mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; - physaddr = mr_offset + - section->offset_within_address_space - - section->offset_within_region; - cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx, - iotlbentry->attrs, MEMTX_DECODE_ERROR, 0); - - cpu_unassigned_access(cpu, addr, false, true, 0, 4); - /* The CPU's unassigned access hook might have longjumped out - * with an exception. If it didn't (or there was no hook) then - * we can't proceed further. + /* + * Not guest RAM, so there is no ram_addr_t for it. Return -1, + * and we will execute a single insn from this device. */ - report_bad_exec(cpu, addr); - exit(1); + return -1; } p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend); return qemu_ram_addr_from_host_nofail(p); |