diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2020-07-11 19:27:59 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2020-07-11 19:27:59 +0100 |
commit | d34498309cff7560ac90c422c56e3137e6a64b19 (patch) | |
tree | 0a5207cc1a1a637b5abb3db997b503c1ce9f5375 | |
parent | 2033cc6efa98b831d7839e367aa7d5aa74d0750f (diff) | |
parent | 19b293472f1514b5424ef4d9b092e02bd9b106c2 (diff) |
Merge remote-tracking branch 'remotes/philmd-gitlab/tags/avr-port-20200711' into staging
8bit AVR port from Michael Rolnik.
Michael started to work on the AVR port few years ago [*] and kept
improving the code over various series.
List of people who help him (in chronological order):
- Richard Henderson
- Sarah Harris and Edward Robbins
- Philippe Mathieu-Daudé and Aleksandar Markovic
- Pavel Dovgalyuk
- Thomas Huth
[*] The oldest contribution I could find on the list is from 2016:
https://lists.nongnu.org/archive/html/qemu-devel/2016-06/msg02985.html
Tests included:
$ avocado --show=app run -t arch:avr tests/acceptance/
Fetching asset from tests/acceptance/machine_avr6.py:AVR6Machine.test_freertos
(1/1) tests/acceptance/machine_avr6.py:AVR6Machine.test_freertos: PASS (2.13 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 2.35 s
$ make check-qtest-avr
TEST check-qtest-avr: tests/qtest/boot-serial-test
TEST check-qtest-avr: tests/qtest/cdrom-test
TEST check-qtest-avr: tests/qtest/device-introspect-test
TEST check-qtest-avr: tests/qtest/machine-none-test
TEST check-qtest-avr: tests/qtest/qmp-test
TEST check-qtest-avr: tests/qtest/qmp-cmd-test
TEST check-qtest-avr: tests/qtest/qom-test
TEST check-qtest-avr: tests/qtest/test-hmp
TEST check-qtest-avr: tests/qtest/qos-test
CI results:
. https://cirrus-ci.com/build/5697049146425344
. https://gitlab.com/philmd/qemu/-/pipelines/165328058
. https://travis-ci.org/github/philmd/qemu/builds/705817933
. https://app.shippable.com/github/philmd/qemu/runs/822/summary/console
# gpg: Signature made Sat 11 Jul 2020 10:03:11 BST
# gpg: using RSA key FAABE75E12917221DCFD6BB2E3E32C2CDEADC0DE
# gpg: Good signature from "Philippe Mathieu-Daudé (F4BUG) <f4bug@amsat.org>" [full]
# Primary key fingerprint: FAAB E75E 1291 7221 DCFD 6BB2 E3E3 2C2C DEAD C0DE
* remotes/philmd-gitlab/tags/avr-port-20200711: (32 commits)
target/avr/disas: Fix store instructions display order
target/avr/cpu: Fix $PC displayed address
target/avr/cpu: Drop tlb_flush() in avr_cpu_reset()
target/avr: Add section into QEMU documentation
tests/acceptance: Test the Arduino MEGA2560 board
tests/boot-serial: Test some Arduino boards (AVR based)
hw/avr: Add limited support for some Arduino boards
hw/avr: Add some ATmega microcontrollers
hw/avr: Add support for loading ELF/raw binaries
hw/misc: avr: Add limited support for power reduction device
hw/timer: avr: Add limited support for 16-bit timer peripheral
hw/char: avr: Add limited support for USART peripheral
tests/machine-none: Add AVR support
target/avr: Register AVR support with the rest of QEMU
target/avr: Add support for disassembling via option '-d in_asm'
target/avr: Initialize TCG register variables
target/avr: Add instruction translation - CPU main translation function
target/avr: Add instruction translation - MCU Control Instructions
target/avr: Add instruction translation - Bit and Bit-test Instructions
target/avr: Add instruction translation - Data Transfer Instructions
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
49 files changed, 7172 insertions, 1 deletions
diff --git a/MAINTAINERS b/MAINTAINERS index 361ae5c662..fe8139f367 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -167,6 +167,14 @@ S: Maintained F: hw/arm/smmu* F: include/hw/arm/smmu* +AVR TCG CPUs +M: Michael Rolnik <mrolnik@gmail.com> +R: Sarah Harris <S.E.Harris@kent.ac.uk> +S: Maintained +F: gdb-xml/avr-cpu.xml +F: target/avr/ +F: tests/acceptance/machine_avr6.py + CRIS TCG CPUs M: Edgar E. Iglesias <edgar.iglesias@gmail.com> S: Maintained @@ -982,6 +990,28 @@ F: include/hw/*/nrf51*.h F: include/hw/*/microbit*.h F: tests/qtest/microbit-test.c +AVR Machines +------------- + +AVR MCUs +M: Michael Rolnik <mrolnik@gmail.com> +R: Sarah Harris <S.E.Harris@kent.ac.uk> +S: Maintained +F: default-configs/avr-softmmu.mak +F: hw/avr/ +F: include/hw/char/avr_usart.h +F: hw/char/avr_usart.c +F: include/hw/timer/avr_timer16.h +F: hw/timer/avr_timer16.c +F: include/hw/misc/avr_power.h +F: hw/misc/avr_power.c + +Arduino +M: Philippe Mathieu-Daudé <f4bug@amsat.org> +R: Sarah Harris <S.E.Harris@kent.ac.uk> +S: Maintained +F: hw/avr/arduino.c + CRIS Machines ------------- Axis Dev88 @@ -8143,6 +8143,10 @@ case "$target_name" in mttcg="yes" gdb_xml_files="aarch64-core.xml aarch64-fpu.xml arm-core.xml arm-vfp.xml arm-vfp3.xml arm-neon.xml arm-m-profile.xml" ;; + avr) + gdb_xml_files="avr-cpu.xml" + target_compiler=$cross_cc_avr + ;; cris) ;; hppa) @@ -8387,6 +8391,9 @@ for i in $ARCH $TARGET_BASE_ARCH ; do disas_config "ARM_A64" fi ;; + avr) + disas_config "AVR" + ;; cris) disas_config "CRIS" ;; diff --git a/default-configs/avr-softmmu.mak b/default-configs/avr-softmmu.mak new file mode 100644 index 0000000000..80218add98 --- /dev/null +++ b/default-configs/avr-softmmu.mak @@ -0,0 +1,5 @@ +# Default configuration for avr-softmmu + +# Boards: +# +CONFIG_ARDUINO=y diff --git a/docs/system/target-avr.rst b/docs/system/target-avr.rst new file mode 100644 index 0000000000..dc99afc895 --- /dev/null +++ b/docs/system/target-avr.rst @@ -0,0 +1,37 @@ +.. _AVR-System-emulator: + +AVR System emulator +------------------- + +Use the executable ``qemu-system-avr`` to emulate a AVR 8 bit based machine. +These can have one of the following cores: avr1, avr2, avr25, avr3, avr31, +avr35, avr4, avr5, avr51, avr6, avrtiny, xmega2, xmega3, xmega4, xmega5, +xmega6 and xmega7. + +As for now it supports few Arduino boards for educational and testing purposes. +These boards use a ATmega controller, which model is limited to USART & 16-bit +timer devices, enought to run FreeRTOS based applications (like +https://github.com/seharris/qemu-avr-tests/blob/master/free-rtos/Demo/AVR_ATMega2560_GCC/demo.elf +). + +Following are examples of possible usages, assuming demo.elf is compiled for +AVR cpu + + - Continuous non interrupted execution: + ``qemu-system-avr -machine mega2560 -bios demo.elf`` + + - Continuous non interrupted execution with serial output into telnet window: + ``qemu-system-avr -machine mega2560 -bios demo.elf -serial + tcp::5678,server,nowait -nographic`` + and then in another shell + ``telnet localhost 5678`` + + - Debugging wit GDB debugger: + ``qemu-system-avr -machine mega2560 -bios demo.elf -s -S`` + and then in another shell + ``avr-gdb demo.elf`` + and then within GDB shell + ``target remote :1234`` + + - Print out executed instructions: + ``qemu-system-avr -machine mega2560 -bios demo.elf -d in_asm`` diff --git a/docs/system/targets.rst b/docs/system/targets.rst index 99435a3eba..560783644d 100644 --- a/docs/system/targets.rst +++ b/docs/system/targets.rst @@ -19,3 +19,4 @@ Contents: target-xtensa target-s390x target-rx + target-avr diff --git a/gdb-xml/avr-cpu.xml b/gdb-xml/avr-cpu.xml new file mode 100644 index 0000000000..c4747f5b40 --- /dev/null +++ b/gdb-xml/avr-cpu.xml @@ -0,0 +1,49 @@ +<?xml version="1.0"?> +<!-- Copyright (C) 2018-2019 Free Software Foundation, Inc. + + Copying and distribution of this file, with or without modification, + are permitted in any medium without royalty provided the copyright + notice and this notice are preserved. --> + +<!-- Register numbers are hard-coded in order to maintain backward + compatibility with older versions of tools that didn't use xml + register descriptions. --> + +<!DOCTYPE feature SYSTEM "gdb-target.dtd"> +<feature name="org.gnu.gdb.riscv.cpu"> + <reg name="r0" bitsize="8" type="int" regnum="0"/> + <reg name="r1" bitsize="8" type="int"/> + <reg name="r2" bitsize="8" type="int"/> + <reg name="r3" bitsize="8" type="int"/> + <reg name="r4" bitsize="8" type="int"/> + <reg name="r5" bitsize="8" type="int"/> + <reg name="r6" bitsize="8" type="int"/> + <reg name="r7" bitsize="8" type="int"/> + <reg name="r8" bitsize="8" type="int"/> + <reg name="r9" bitsize="8" type="int"/> + <reg name="r10" bitsize="8" type="int"/> + <reg name="r11" bitsize="8" type="int"/> + <reg name="r12" bitsize="8" type="int"/> + <reg name="r13" bitsize="8" type="int"/> + <reg name="r14" bitsize="8" type="int"/> + <reg name="r15" bitsize="8" type="int"/> + <reg name="r16" bitsize="8" type="int"/> + <reg name="r17" bitsize="8" type="int"/> + <reg name="r18" bitsize="8" type="int"/> + <reg name="r19" bitsize="8" type="int"/> + <reg name="r20" bitsize="8" type="int"/> + <reg name="r21" bitsize="8" type="int"/> + <reg name="r22" bitsize="8" type="int"/> + <reg name="r23" bitsize="8" type="int"/> + <reg name="r24" bitsize="8" type="int"/> + <reg name="r25" bitsize="8" type="int"/> + <reg name="r26" bitsize="8" type="int"/> + <reg name="r27" bitsize="8" type="int"/> + <reg name="r28" bitsize="8" type="int"/> + <reg name="r29" bitsize="8" type="int"/> + <reg name="r30" bitsize="8" type="int"/> + <reg name="r31" bitsize="8" type="int"/> + <reg name="sreg" bitsize="8" type="int"/> + <reg name="sp" bitsize="8" type="int"/> + <reg name="pc" bitsize="8" type="int"/> +</feature> diff --git a/hw/Kconfig b/hw/Kconfig index 62f9ebdc22..4de1797ffd 100644 --- a/hw/Kconfig +++ b/hw/Kconfig @@ -43,6 +43,7 @@ source watchdog/Kconfig # arch Kconfig source arm/Kconfig source alpha/Kconfig +source avr/Kconfig source cris/Kconfig source hppa/Kconfig source i386/Kconfig diff --git a/hw/avr/Kconfig b/hw/avr/Kconfig new file mode 100644 index 0000000000..d31298c3cc --- /dev/null +++ b/hw/avr/Kconfig @@ -0,0 +1,9 @@ +config AVR_ATMEGA_MCU + bool + select AVR_TIMER16 + select AVR_USART + select AVR_POWER + +config ARDUINO + select AVR_ATMEGA_MCU + select UNIMP diff --git a/hw/avr/Makefile.objs b/hw/avr/Makefile.objs new file mode 100644 index 0000000000..4dca064bfc --- /dev/null +++ b/hw/avr/Makefile.objs @@ -0,0 +1,3 @@ +obj-y += boot.o +obj-$(CONFIG_AVR_ATMEGA_MCU) += atmega.o +obj-$(CONFIG_ARDUINO) += arduino.o diff --git a/hw/avr/arduino.c b/hw/avr/arduino.c new file mode 100644 index 0000000000..65093ab6fd --- /dev/null +++ b/hw/avr/arduino.c @@ -0,0 +1,149 @@ +/* + * QEMU Arduino boards + * + * Copyright (c) 2019-2020 Philippe Mathieu-Daudé + * + * This work is licensed under the terms of the GNU GPLv2 or later. + * See the COPYING file in the top-level directory. + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +/* TODO: Implement the use of EXTRAM */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "hw/boards.h" +#include "atmega.h" +#include "boot.h" + +typedef struct ArduinoMachineState { + /*< private >*/ + MachineState parent_obj; + /*< public >*/ + AtmegaMcuState mcu; +} ArduinoMachineState; + +typedef struct ArduinoMachineClass { + /*< private >*/ + MachineClass parent_class; + /*< public >*/ + const char *mcu_type; + uint64_t xtal_hz; +} ArduinoMachineClass; + +#define TYPE_ARDUINO_MACHINE \ + MACHINE_TYPE_NAME("arduino") +#define ARDUINO_MACHINE(obj) \ + OBJECT_CHECK(ArduinoMachineState, (obj), TYPE_ARDUINO_MACHINE) +#define ARDUINO_MACHINE_CLASS(klass) \ + OBJECT_CLASS_CHECK(ArduinoMachineClass, (klass), TYPE_ARDUINO_MACHINE) +#define ARDUINO_MACHINE_GET_CLASS(obj) \ + OBJECT_GET_CLASS(ArduinoMachineClass, (obj), TYPE_ARDUINO_MACHINE) + +static void arduino_machine_init(MachineState *machine) +{ + ArduinoMachineClass *amc = ARDUINO_MACHINE_GET_CLASS(machine); + ArduinoMachineState *ams = ARDUINO_MACHINE(machine); + + object_initialize_child(OBJECT(machine), "mcu", &ams->mcu, amc->mcu_type); + object_property_set_uint(OBJECT(&ams->mcu), "xtal-frequency-hz", + amc->xtal_hz, &error_abort); + sysbus_realize(SYS_BUS_DEVICE(&ams->mcu), &error_abort); + + if (machine->firmware) { + if (!avr_load_firmware(&ams->mcu.cpu, machine, + &ams->mcu.flash, machine->firmware)) { + exit(1); + } + } +} + +static void arduino_machine_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + + mc->init = arduino_machine_init; + mc->default_cpus = 1; + mc->min_cpus = mc->default_cpus; + mc->max_cpus = mc->default_cpus; + mc->no_floppy = 1; + mc->no_cdrom = 1; + mc->no_parallel = 1; +} + +static void arduino_duemilanove_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + ArduinoMachineClass *amc = ARDUINO_MACHINE_CLASS(oc); + + /* https://www.arduino.cc/en/Main/ArduinoBoardDuemilanove */ + mc->desc = "Arduino Duemilanove (ATmega168)", + mc->alias = "2009"; + amc->mcu_type = TYPE_ATMEGA168_MCU; + amc->xtal_hz = 16 * 1000 * 1000; +}; + +static void arduino_uno_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + ArduinoMachineClass *amc = ARDUINO_MACHINE_CLASS(oc); + + /* https://store.arduino.cc/arduino-uno-rev3 */ + mc->desc = "Arduino UNO (ATmega328P)"; + mc->alias = "uno"; + amc->mcu_type = TYPE_ATMEGA328_MCU; + amc->xtal_hz = 16 * 1000 * 1000; +}; + +static void arduino_mega_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + ArduinoMachineClass *amc = ARDUINO_MACHINE_CLASS(oc); + + /* https://www.arduino.cc/en/Main/ArduinoBoardMega */ + mc->desc = "Arduino Mega (ATmega1280)"; + mc->alias = "mega"; + amc->mcu_type = TYPE_ATMEGA1280_MCU; + amc->xtal_hz = 16 * 1000 * 1000; +}; + +static void arduino_mega2560_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + ArduinoMachineClass *amc = ARDUINO_MACHINE_CLASS(oc); + + /* https://store.arduino.cc/arduino-mega-2560-rev3 */ + mc->desc = "Arduino Mega 2560 (ATmega2560)"; + mc->alias = "mega2560"; + amc->mcu_type = TYPE_ATMEGA2560_MCU; + amc->xtal_hz = 16 * 1000 * 1000; /* CSTCE16M0V53-R0 */ +}; + +static const TypeInfo arduino_machine_types[] = { + { + .name = MACHINE_TYPE_NAME("arduino-duemilanove"), + .parent = TYPE_ARDUINO_MACHINE, + .class_init = arduino_duemilanove_class_init, + }, { + .name = MACHINE_TYPE_NAME("arduino-uno"), + .parent = TYPE_ARDUINO_MACHINE, + .class_init = arduino_uno_class_init, + }, { + .name = MACHINE_TYPE_NAME("arduino-mega"), + .parent = TYPE_ARDUINO_MACHINE, + .class_init = arduino_mega_class_init, + }, { + .name = MACHINE_TYPE_NAME("arduino-mega-2560-v3"), + .parent = TYPE_ARDUINO_MACHINE, + .class_init = arduino_mega2560_class_init, + }, { + .name = TYPE_ARDUINO_MACHINE, + .parent = TYPE_MACHINE, + .instance_size = sizeof(ArduinoMachineState), + .class_size = sizeof(ArduinoMachineClass), + .class_init = arduino_machine_class_init, + .abstract = true, + } +}; + +DEFINE_TYPES(arduino_machine_types) diff --git a/hw/avr/atmega.c b/hw/avr/atmega.c new file mode 100644 index 0000000000..7131224431 --- /dev/null +++ b/hw/avr/atmega.c @@ -0,0 +1,458 @@ +/* + * QEMU ATmega MCU + * + * Copyright (c) 2019-2020 Philippe Mathieu-Daudé + * + * This work is licensed under the terms of the GNU GPLv2 or later. + * See the COPYING file in the top-level directory. + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "qemu/module.h" +#include "qemu/units.h" +#include "qapi/error.h" +#include "exec/memory.h" +#include "exec/address-spaces.h" +#include "sysemu/sysemu.h" +#include "hw/qdev-properties.h" +#include "hw/sysbus.h" +#include "hw/boards.h" /* FIXME memory_region_allocate_system_memory for sram */ +#include "hw/misc/unimp.h" +#include "atmega.h" + +enum AtmegaPeripheral { + POWER0, POWER1, + GPIOA, GPIOB, GPIOC, GPIOD, GPIOE, GPIOF, + GPIOG, GPIOH, GPIOI, GPIOJ, GPIOK, GPIOL, + USART0, USART1, USART2, USART3, + TIMER0, TIMER1, TIMER2, TIMER3, TIMER4, TIMER5, + PERIFMAX +}; + +#define GPIO(n) (n + GPIOA) +#define USART(n) (n + USART0) +#define TIMER(n) (n + TIMER0) +#define POWER(n) (n + POWER0) + +typedef struct { + uint16_t addr; + enum AtmegaPeripheral power_index; + uint8_t power_bit; + /* timer specific */ + uint16_t intmask_addr; + uint16_t intflag_addr; + bool is_timer16; +} peripheral_cfg; + +typedef struct AtmegaMcuClass { + /*< private >*/ + SysBusDeviceClass parent_class; + /*< public >*/ + const char *uc_name; + const char *cpu_type; + size_t flash_size; + size_t eeprom_size; + size_t sram_size; + size_t io_size; + size_t gpio_count; + size_t adc_count; + const uint8_t *irq; + const peripheral_cfg *dev; +} AtmegaMcuClass; + +#define ATMEGA_MCU_CLASS(klass) \ + OBJECT_CLASS_CHECK(AtmegaMcuClass, (klass), TYPE_ATMEGA_MCU) +#define ATMEGA_MCU_GET_CLASS(obj) \ + OBJECT_GET_CLASS(AtmegaMcuClass, (obj), TYPE_ATMEGA_MCU) + +static const peripheral_cfg dev168_328[PERIFMAX] = { + [USART0] = { 0xc0, POWER0, 1 }, + [TIMER2] = { 0xb0, POWER0, 6, 0x70, 0x37, false }, + [TIMER1] = { 0x80, POWER0, 3, 0x6f, 0x36, true }, + [POWER0] = { 0x64 }, + [TIMER0] = { 0x44, POWER0, 5, 0x6e, 0x35, false }, + [GPIOD] = { 0x29 }, + [GPIOC] = { 0x26 }, + [GPIOB] = { 0x23 }, +}, dev1280_2560[PERIFMAX] = { + [USART3] = { 0x130, POWER1, 2 }, + [TIMER5] = { 0x120, POWER1, 5, 0x73, 0x3a, true }, + [GPIOL] = { 0x109 }, + [GPIOK] = { 0x106 }, + [GPIOJ] = { 0x103 }, + [GPIOH] = { 0x100 }, + [USART2] = { 0xd0, POWER1, 1 }, + [USART1] = { 0xc8, POWER1, 0 }, + [USART0] = { 0xc0, POWER0, 1 }, + [TIMER2] = { 0xb0, POWER0, 6, 0x70, 0x37, false }, /* TODO async */ + [TIMER4] = { 0xa0, POWER1, 4, 0x72, 0x39, true }, + [TIMER3] = { 0x90, POWER1, 3, 0x71, 0x38, true }, + [TIMER1] = { 0x80, POWER0, 3, 0x6f, 0x36, true }, + [POWER1] = { 0x65 }, + [POWER0] = { 0x64 }, + [TIMER0] = { 0x44, POWER0, 5, 0x6e, 0x35, false }, + [GPIOG] = { 0x32 }, + [GPIOF] = { 0x2f }, + [GPIOE] = { 0x2c }, + [GPIOD] = { 0x29 }, + [GPIOC] = { 0x26 }, + [GPIOB] = { 0x23 }, + [GPIOA] = { 0x20 }, +}; + +enum AtmegaIrq { + USART0_RXC_IRQ, USART0_DRE_IRQ, USART0_TXC_IRQ, + USART1_RXC_IRQ, USART1_DRE_IRQ, USART1_TXC_IRQ, + USART2_RXC_IRQ, USART2_DRE_IRQ, USART2_TXC_IRQ, + USART3_RXC_IRQ, USART3_DRE_IRQ, USART3_TXC_IRQ, + TIMER0_CAPT_IRQ, TIMER0_COMPA_IRQ, TIMER0_COMPB_IRQ, + TIMER0_COMPC_IRQ, TIMER0_OVF_IRQ, + TIMER1_CAPT_IRQ, TIMER1_COMPA_IRQ, TIMER1_COMPB_IRQ, + TIMER1_COMPC_IRQ, TIMER1_OVF_IRQ, + TIMER2_CAPT_IRQ, TIMER2_COMPA_IRQ, TIMER2_COMPB_IRQ, + TIMER2_COMPC_IRQ, TIMER2_OVF_IRQ, + TIMER3_CAPT_IRQ, TIMER3_COMPA_IRQ, TIMER3_COMPB_IRQ, + TIMER3_COMPC_IRQ, TIMER3_OVF_IRQ, + TIMER4_CAPT_IRQ, TIMER4_COMPA_IRQ, TIMER4_COMPB_IRQ, + TIMER4_COMPC_IRQ, TIMER4_OVF_IRQ, + TIMER5_CAPT_IRQ, TIMER5_COMPA_IRQ, TIMER5_COMPB_IRQ, + TIMER5_COMPC_IRQ, TIMER5_OVF_IRQ, + IRQ_COUNT +}; + +#define USART_IRQ_COUNT 3 +#define USART_RXC_IRQ(n) (n * USART_IRQ_COUNT + USART0_RXC_IRQ) +#define USART_DRE_IRQ(n) (n * USART_IRQ_COUNT + USART0_DRE_IRQ) +#define USART_TXC_IRQ(n) (n * USART_IRQ_COUNT + USART0_TXC_IRQ) +#define TIMER_IRQ_COUNT 5 +#define TIMER_CAPT_IRQ(n) (n * TIMER_IRQ_COUNT + TIMER0_CAPT_IRQ) +#define TIMER_COMPA_IRQ(n) (n * TIMER_IRQ_COUNT + TIMER0_COMPA_IRQ) +#define TIMER_COMPB_IRQ(n) (n * TIMER_IRQ_COUNT + TIMER0_COMPB_IRQ) +#define TIMER_COMPC_IRQ(n) (n * TIMER_IRQ_COUNT + TIMER0_COMPC_IRQ) +#define TIMER_OVF_IRQ(n) (n * TIMER_IRQ_COUNT + TIMER0_OVF_IRQ) + +static const uint8_t irq168_328[IRQ_COUNT] = { + [TIMER2_COMPA_IRQ] = 8, + [TIMER2_COMPB_IRQ] = 9, + [TIMER2_OVF_IRQ] = 10, + [TIMER1_CAPT_IRQ] = 11, + [TIMER1_COMPA_IRQ] = 12, + [TIMER1_COMPB_IRQ] = 13, + [TIMER1_OVF_IRQ] = 14, + [TIMER0_COMPA_IRQ] = 15, + [TIMER0_COMPB_IRQ] = 16, + [TIMER0_OVF_IRQ] = 17, + [USART0_RXC_IRQ] = 19, + [USART0_DRE_IRQ] = 20, + [USART0_TXC_IRQ] = 21, +}, irq1280_2560[IRQ_COUNT] = { + [TIMER2_COMPA_IRQ] = 14, + [TIMER2_COMPB_IRQ] = 15, + [TIMER2_OVF_IRQ] = 16, + [TIMER1_CAPT_IRQ] = 17, + [TIMER1_COMPA_IRQ] = 18, + [TIMER1_COMPB_IRQ] = 19, + [TIMER1_COMPC_IRQ] = 20, + [TIMER1_OVF_IRQ] = 21, + [TIMER0_COMPA_IRQ] = 22, + [TIMER0_COMPB_IRQ] = 23, + [TIMER0_OVF_IRQ] = 24, + [USART0_RXC_IRQ] = 26, + [USART0_DRE_IRQ] = 27, + [USART0_TXC_IRQ] = 28, + [TIMER3_CAPT_IRQ] = 32, + [TIMER3_COMPA_IRQ] = 33, + [TIMER3_COMPB_IRQ] = 34, + [TIMER3_COMPC_IRQ] = 35, + [TIMER3_OVF_IRQ] = 36, + [USART1_RXC_IRQ] = 37, + [USART1_DRE_IRQ] = 38, + [USART1_TXC_IRQ] = 39, + [TIMER4_CAPT_IRQ] = 42, + [TIMER4_COMPA_IRQ] = 43, + [TIMER4_COMPB_IRQ] = 44, + [TIMER4_COMPC_IRQ] = 45, + [TIMER4_OVF_IRQ] = 46, + [TIMER5_CAPT_IRQ] = 47, + [TIMER5_COMPA_IRQ] = 48, + [TIMER5_COMPB_IRQ] = 49, + [TIMER5_COMPC_IRQ] = 50, + [TIMER5_OVF_IRQ] = 51, + [USART2_RXC_IRQ] = 52, + [USART2_DRE_IRQ] = 53, + [USART2_TXC_IRQ] = 54, + [USART3_RXC_IRQ] = 55, + [USART3_DRE_IRQ] = 56, + [USART3_TXC_IRQ] = 57, +}; + +static void connect_peripheral_irq(const AtmegaMcuClass *k, + SysBusDevice *dev, int dev_irqn, + DeviceState *cpu, + unsigned peripheral_index) +{ + int cpu_irq = k->irq[peripheral_index]; + + if (!cpu_irq) { + return; + } + /* FIXME move that to avr_cpu_set_int() once 'sample' board is removed */ + assert(cpu_irq >= 2); + cpu_irq -= 2; + + sysbus_connect_irq(dev, dev_irqn, qdev_get_gpio_in(cpu, cpu_irq)); +} + +static void connect_power_reduction_gpio(AtmegaMcuState *s, + const AtmegaMcuClass *k, + DeviceState *cpu, + unsigned peripheral_index) +{ + unsigned power_index = k->dev[peripheral_index].power_index; + assert(k->dev[power_index].addr); + sysbus_connect_irq(SYS_BUS_DEVICE(&s->pwr[power_index - POWER0]), + k->dev[peripheral_index].power_bit, + qdev_get_gpio_in(cpu, 0)); +} + +static void atmega_realize(DeviceState *dev, Error **errp) +{ + AtmegaMcuState *s = ATMEGA_MCU(dev); + const AtmegaMcuClass *mc = ATMEGA_MCU_GET_CLASS(dev); + DeviceState *cpudev; + SysBusDevice *sbd; + char *devname; + size_t i; + + assert(mc->io_size <= 0x200); + + if (!s->xtal_freq_hz) { + error_setg(errp, "\"xtal-frequency-hz\" property must be provided."); + return; + } + + /* CPU */ + object_initialize_child(OBJECT(dev), "cpu", &s->cpu, mc->cpu_type); + object_property_set_bool(OBJECT(&s->cpu), "realized", true, &error_abort); + cpudev = DEVICE(&s->cpu); + + /* SRAM */ + memory_region_init_ram(&s->sram, OBJECT(dev), "sram", mc->sram_size, + &error_abort); + memory_region_add_subregion(get_system_memory(), + OFFSET_DATA + mc->io_size, &s->sram); + + /* Flash */ + memory_region_init_rom(&s->flash, OBJECT(dev), + "flash", mc->flash_size, &error_fatal); + memory_region_add_subregion(get_system_memory(), OFFSET_CODE, &s->flash); + + /* + * I/O + * + * 0x00 - 0x1f: Registers + * 0x20 - 0x5f: I/O memory + * 0x60 - 0xff: Extended I/O + */ + s->io = qdev_new(TYPE_UNIMPLEMENTED_DEVICE); + qdev_prop_set_string(s->io, "name", "I/O"); + qdev_prop_set_uint64(s->io, "size", mc->io_size); + sysbus_realize_and_unref(SYS_BUS_DEVICE(s->io), &error_fatal); + sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->io), 0, OFFSET_DATA, -1234); + + /* Power Reduction */ + for (i = 0; i < POWER_MAX; i++) { + int idx = POWER(i); + if (!mc->dev[idx].addr) { + continue; + } + devname = g_strdup_printf("power%zu", i); + object_initialize_child(OBJECT(dev), devname, &s->pwr[i], + TYPE_AVR_MASK); + sysbus_realize(SYS_BUS_DEVICE(&s->pwr[i]), &error_abort); + sysbus_mmio_map(SYS_BUS_DEVICE(&s->pwr[i]), 0, + OFFSET_DATA + mc->dev[idx].addr); + g_free(devname); + } + + /* GPIO */ + for (i = 0; i < GPIO_MAX; i++) { + int idx = GPIO(i); + if (!mc->dev[idx].addr) { + continue; + } + devname = g_strdup_printf("atmega-gpio-%c", 'a' + (char)i); + create_unimplemented_device(devname, + OFFSET_DATA + mc->dev[idx].addr, 3); + g_free(devname); + } + + /* USART */ + for (i = 0; i < USART_MAX; i++) { + int idx = USART(i); + if (!mc->dev[idx].addr) { + continue; + } + devname = g_strdup_printf("usart%zu", i); + object_initialize_child(OBJECT(dev), devname, &s->usart[i], + TYPE_AVR_USART); + qdev_prop_set_chr(DEVICE(&s->usart[i]), "chardev", serial_hd(i)); + sbd = SYS_BUS_DEVICE(&s->usart[i]); + sysbus_realize(sbd, &error_abort); + sysbus_mmio_map(sbd, 0, OFFSET_DATA + mc->dev[USART(i)].addr); + connect_peripheral_irq(mc, sbd, 0, cpudev, USART_RXC_IRQ(i)); + connect_peripheral_irq(mc, sbd, 1, cpudev, USART_DRE_IRQ(i)); + connect_peripheral_irq(mc, sbd, 2, cpudev, USART_TXC_IRQ(i)); + connect_power_reduction_gpio(s, mc, DEVICE(&s->usart[i]), idx); + g_free(devname); + } + + /* Timer */ + for (i = 0; i < TIMER_MAX; i++) { + int idx = TIMER(i); + if (!mc->dev[idx].addr) { + continue; + } + if (!mc->dev[idx].is_timer16) { + create_unimplemented_device("avr-timer8", + OFFSET_DATA + mc->dev[idx].addr, 5); + create_unimplemented_device("avr-timer8-intmask", + OFFSET_DATA + + mc->dev[idx].intmask_addr, 1); + create_unimplemented_device("avr-timer8-intflag", + OFFSET_DATA + + mc->dev[idx].intflag_addr, 1); + continue; + } + devname = g_strdup_printf("timer%zu", i); + object_initialize_child(OBJECT(dev), devname, &s->timer[i], + TYPE_AVR_TIMER16); + object_property_set_uint(OBJECT(&s->timer[i]), "cpu-frequency-hz", + s->xtal_freq_hz, &error_abort); + sbd = SYS_BUS_DEVICE(&s->timer[i]); + sysbus_realize(sbd, &error_abort); + sysbus_mmio_map(sbd, 0, OFFSET_DATA + mc->dev[idx].addr); + sysbus_mmio_map(sbd, 1, OFFSET_DATA + mc->dev[idx].intmask_addr); + sysbus_mmio_map(sbd, 2, OFFSET_DATA + mc->dev[idx].intflag_addr); + connect_peripheral_irq(mc, sbd, 0, cpudev, TIMER_CAPT_IRQ(i)); + connect_peripheral_irq(mc, sbd, 1, cpudev, TIMER_COMPA_IRQ(i)); + connect_peripheral_irq(mc, sbd, 2, cpudev, TIMER_COMPB_IRQ(i)); + connect_peripheral_irq(mc, sbd, 3, cpudev, TIMER_COMPC_IRQ(i)); + connect_peripheral_irq(mc, sbd, 4, cpudev, TIMER_OVF_IRQ(i)); + connect_power_reduction_gpio(s, mc, DEVICE(&s->timer[i]), idx); + g_free(devname); + } + + create_unimplemented_device("avr-twi", OFFSET_DATA + 0x0b8, 6); + create_unimplemented_device("avr-adc", OFFSET_DATA + 0x078, 8); + create_unimplemented_device("avr-ext-mem-ctrl", OFFSET_DATA + 0x074, 2); + create_unimplemented_device("avr-watchdog", OFFSET_DATA + 0x060, 1); + create_unimplemented_device("avr-spi", OFFSET_DATA + 0x04c, 3); + create_unimplemented_device("avr-eeprom", OFFSET_DATA + 0x03f, 3); +} + +static Property atmega_props[] = { + DEFINE_PROP_UINT64("xtal-frequency-hz", AtmegaMcuState, + xtal_freq_hz, 0), + DEFINE_PROP_END_OF_LIST() +}; + +static void atmega_class_init(ObjectClass *oc, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(oc); + + dc->realize = atmega_realize; + device_class_set_props(dc, atmega_props); + /* Reason: Mapped at fixed location on the system bus */ + dc->user_creatable = false; +} + +static void atmega168_class_init(ObjectClass *oc, void *data) +{ + AtmegaMcuClass *amc = ATMEGA_MCU_CLASS(oc); + + amc->cpu_type = AVR_CPU_TYPE_NAME("avr5"); + amc->flash_size = 16 * KiB; + amc->eeprom_size = 512; + amc->sram_size = 1 * KiB; + amc->io_size = 256; + amc->gpio_count = 23; + amc->adc_count = 6; + amc->irq = irq168_328; + amc->dev = dev168_328; +}; + +static void atmega328_class_init(ObjectClass *oc, void *data) +{ + AtmegaMcuClass *amc = ATMEGA_MCU_CLASS(oc); + + amc->cpu_type = AVR_CPU_TYPE_NAME("avr5"); + amc->flash_size = 32 * KiB; + amc->eeprom_size = 1 * KiB; + amc->sram_size = 2 * KiB; + amc->io_size = 256; + amc->gpio_count = 23; + amc->adc_count = 6; + amc->irq = irq168_328; + amc->dev = dev168_328; +}; + +static void atmega1280_class_init(ObjectClass *oc, void *data) +{ + AtmegaMcuClass *amc = ATMEGA_MCU_CLASS(oc); + + amc->cpu_type = AVR_CPU_TYPE_NAME("avr6"); + amc->flash_size = 128 * KiB; + amc->eeprom_size = 4 * KiB; + amc->sram_size = 8 * KiB; + amc->io_size = 512; + amc->gpio_count = 86; + amc->adc_count = 16; + amc->irq = irq1280_2560; + amc->dev = dev1280_2560; +}; + +static void atmega2560_class_init(ObjectClass *oc, void *data) +{ + AtmegaMcuClass *amc = ATMEGA_MCU_CLASS(oc); + + amc->cpu_type = AVR_CPU_TYPE_NAME("avr6"); + amc->flash_size = 256 * KiB; + amc->eeprom_size = 4 * KiB; + amc->sram_size = 8 * KiB; + amc->io_size = 512; + amc->gpio_count = 54; + amc->adc_count = 16; + amc->irq = irq1280_2560; + amc->dev = dev1280_2560; +}; + +static const TypeInfo atmega_mcu_types[] = { + { + .name = TYPE_ATMEGA168_MCU, + .parent = TYPE_ATMEGA_MCU, + .class_init = atmega168_class_init, + }, { + .name = TYPE_ATMEGA328_MCU, + .parent = TYPE_ATMEGA_MCU, + .class_init = atmega328_class_init, + }, { + .name = TYPE_ATMEGA1280_MCU, + .parent = TYPE_ATMEGA_MCU, + .class_init = atmega1280_class_init, + }, { + .name = TYPE_ATMEGA2560_MCU, + .parent = TYPE_ATMEGA_MCU, + .class_init = atmega2560_class_init, + }, { + .name = TYPE_ATMEGA_MCU, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AtmegaMcuState), + .class_size = sizeof(AtmegaMcuClass), + .class_init = atmega_class_init, + .abstract = true, + } +}; + +DEFINE_TYPES(atmega_mcu_types) diff --git a/hw/avr/atmega.h b/hw/avr/atmega.h new file mode 100644 index 0000000000..0928cb0ce6 --- /dev/null +++ b/hw/avr/atmega.h @@ -0,0 +1,48 @@ +/* + * QEMU ATmega MCU + * + * Copyright (c) 2019-2020 Philippe Mathieu-Daudé + * + * This work is licensed under the terms of the GNU GPLv2 or later. + * See the COPYING file in the top-level directory. + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#ifndef HW_AVR_ATMEGA_H +#define HW_AVR_ATMEGA_H + +#include "hw/char/avr_usart.h" +#include "hw/timer/avr_timer16.h" +#include "hw/misc/avr_power.h" +#include "target/avr/cpu.h" + +#define TYPE_ATMEGA_MCU "ATmega" +#define TYPE_ATMEGA168_MCU "ATmega168" +#define TYPE_ATMEGA328_MCU "ATmega328" +#define TYPE_ATMEGA1280_MCU "ATmega1280" +#define TYPE_ATMEGA2560_MCU "ATmega2560" + +#define ATMEGA_MCU(obj) OBJECT_CHECK(AtmegaMcuState, (obj), TYPE_ATMEGA_MCU) + +#define POWER_MAX 2 +#define USART_MAX 4 +#define TIMER_MAX 6 +#define GPIO_MAX 12 + +typedef struct AtmegaMcuState { + /*< private >*/ + SysBusDevice parent_obj; + /*< public >*/ + + AVRCPU cpu; + MemoryRegion flash; + MemoryRegion eeprom; + MemoryRegion sram; + DeviceState *io; + AVRMaskState pwr[POWER_MAX]; + AVRUsartState usart[USART_MAX]; + AVRTimer16State timer[TIMER_MAX]; + uint64_t xtal_freq_hz; +} AtmegaMcuState; + +#endif /* HW_AVR_ATMEGA_H */ diff --git a/hw/avr/boot.c b/hw/avr/boot.c new file mode 100644 index 0000000000..6fbcde4061 --- /dev/null +++ b/hw/avr/boot.c @@ -0,0 +1,115 @@ +/* + * AVR loader helpers + * + * Copyright (c) 2019-2020 Philippe Mathieu-Daudé + * + * This work is licensed under the terms of the GNU GPLv2 or later. + * See the COPYING file in the top-level directory. + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "qemu-common.h" +#include "hw/loader.h" +#include "elf.h" +#include "boot.h" +#include "qemu/error-report.h" + +static const char *avr_elf_e_flags_to_cpu_type(uint32_t flags) +{ + switch (flags & EF_AVR_MACH) { + case bfd_mach_avr1: + return AVR_CPU_TYPE_NAME("avr1"); + case bfd_mach_avr2: + return AVR_CPU_TYPE_NAME("avr2"); + case bfd_mach_avr25: + return AVR_CPU_TYPE_NAME("avr25"); + case bfd_mach_avr3: + return AVR_CPU_TYPE_NAME("avr3"); + case bfd_mach_avr31: + return AVR_CPU_TYPE_NAME("avr31"); + case bfd_mach_avr35: + return AVR_CPU_TYPE_NAME("avr35"); + case bfd_mach_avr4: + return AVR_CPU_TYPE_NAME("avr4"); + case bfd_mach_avr5: + return AVR_CPU_TYPE_NAME("avr5"); + case bfd_mach_avr51: + return AVR_CPU_TYPE_NAME("avr51"); + case bfd_mach_avr6: + return AVR_CPU_TYPE_NAME("avr6"); + case bfd_mach_avrtiny: + return AVR_CPU_TYPE_NAME("avrtiny"); + case bfd_mach_avrxmega2: + return AVR_CPU_TYPE_NAME("xmega2"); + case bfd_mach_avrxmega3: + return AVR_CPU_TYPE_NAME("xmega3"); + case bfd_mach_avrxmega4: + return AVR_CPU_TYPE_NAME("xmega4"); + case bfd_mach_avrxmega5: + return AVR_CPU_TYPE_NAME("xmega5"); + case bfd_mach_avrxmega6: + return AVR_CPU_TYPE_NAME("xmega6"); + case bfd_mach_avrxmega7: + return AVR_CPU_TYPE_NAME("xmega7"); + default: + return NULL; + } +} + +bool avr_load_firmware(AVRCPU *cpu, MachineState *ms, + MemoryRegion *program_mr, const char *firmware) +{ + const char *filename; + int bytes_loaded; + uint64_t entry; + uint32_t e_flags; + + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware); + if (filename == NULL) { + error_report("Unable to find %s", firmware); + return false; + } + + bytes_loaded = load_elf_ram_sym(filename, + NULL, NULL, NULL, + &entry, NULL, NULL, + &e_flags, 0, EM_AVR, 0, 0, + NULL, true, NULL); + if (bytes_loaded >= 0) { + /* If ELF file is provided, determine CPU type reading ELF e_flags. */ + const char *elf_cpu = avr_elf_e_flags_to_cpu_type(e_flags); + const char *mcu_cpu_type = object_get_typename(OBJECT(cpu)); + int cpu_len = strlen(mcu_cpu_type) - strlen(AVR_CPU_TYPE_SUFFIX); + + if (entry) { + error_report("BIOS entry_point must be 0x0000 " + "(ELF image '%s' has entry_point 0x%04" PRIx64 ")", + firmware, entry); + return false; + } + if (!elf_cpu) { + warn_report("Could not determine CPU type for ELF image '%s', " + "assuming '%.*s' CPU", + firmware, cpu_len, mcu_cpu_type); + return true; + } + if (strcmp(elf_cpu, mcu_cpu_type)) { + error_report("Current machine: %s with '%.*s' CPU", + MACHINE_GET_CLASS(ms)->desc, cpu_len, mcu_cpu_type); + error_report("ELF image '%s' is for '%.*s' CPU", + firmware, + (int)(strlen(elf_cpu) - strlen(AVR_CPU_TYPE_SUFFIX)), + elf_cpu); + return false; + } + } else { + bytes_loaded = load_image_mr(filename, program_mr); + } + if (bytes_loaded < 0) { + error_report("Unable to load firmware image %s as ELF or raw binary", + firmware); + return false; + } + return true; +} diff --git a/hw/avr/boot.h b/hw/avr/boot.h new file mode 100644 index 0000000000..684d553322 --- /dev/null +++ b/hw/avr/boot.h @@ -0,0 +1,33 @@ +/* + * AVR loader helpers + * + * Copyright (c) 2019-2020 Philippe Mathieu-Daudé + * + * This work is licensed under the terms of the GNU GPLv2 or later. + * See the COPYING file in the top-level directory. + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#ifndef HW_AVR_BOOT_H +#define HW_AVR_BOOT_H + +#include "hw/boards.h" +#include "cpu.h" + +/** + * avr_load_firmware: load an image into a memory region + * + * @cpu: Handle a AVR CPU object + * @ms: A MachineState + * @mr: Memory Region to load into + * @firmware: Path to the firmware file (raw binary or ELF format) + * + * Load a firmware supplied by the machine or by the user with the + * '-bios' command line option, and put it in target memory. + * + * Returns: true on success, false on error. + */ +bool avr_load_firmware(AVRCPU *cpu, MachineState *ms, + MemoryRegion *mr, const char *firmware); + +#endif diff --git a/hw/char/Kconfig b/hw/char/Kconfig index 874627520c..b7e0e4d5fa 100644 --- a/hw/char/Kconfig +++ b/hw/char/Kconfig @@ -49,3 +49,6 @@ config TERMINAL3270 config RENESAS_SCI bool + +config AVR_USART + bool diff --git a/hw/char/Makefile.objs b/hw/char/Makefile.objs index 8306c4a789..bf177ac41d 100644 --- a/hw/char/Makefile.objs +++ b/hw/char/Makefile.objs @@ -22,6 +22,7 @@ common-obj-$(CONFIG_DIGIC) += digic-uart.o common-obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o common-obj-$(CONFIG_RASPI) += bcm2835_aux.o common-obj-$(CONFIG_RENESAS_SCI) += renesas_sci.o +common-obj-$(CONFIG_AVR_USART) += avr_usart.o common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o diff --git a/hw/char/avr_usart.c b/hw/char/avr_usart.c new file mode 100644 index 0000000000..fbe2a112b7 --- /dev/null +++ b/hw/char/avr_usart.c @@ -0,0 +1,320 @@ +/* + * AVR USART + * + * Copyright (c) 2018 University of Kent + * Author: Sarah Harris + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "hw/char/avr_usart.h" +#include "qemu/log.h" +#include "hw/irq.h" +#include "hw/qdev-properties.h" + +static int avr_usart_can_receive(void *opaque) +{ + AVRUsartState *usart = opaque; + + if (usart->data_valid || !(usart->csrb & USART_CSRB_RXEN)) { + return 0; + } + return 1; +} + +static void avr_usart_receive(void *opaque, const uint8_t *buffer, int size) +{ + AVRUsartState *usart = opaque; + assert(size == 1); + assert(!usart->data_valid); + usart->data = buffer[0]; + usart->data_valid = true; + usart->csra |= USART_CSRA_RXC; + if (usart->csrb & USART_CSRB_RXCIE) { + qemu_set_irq(usart->rxc_irq, 1); + } +} + +static void update_char_mask(AVRUsartState *usart) +{ + uint8_t mode = ((usart->csrc & USART_CSRC_CSZ0) ? 1 : 0) | + ((usart->csrc & USART_CSRC_CSZ1) ? 2 : 0) | + ((usart->csrb & USART_CSRB_CSZ2) ? 4 : 0); + switch (mode) { + case 0: + usart->char_mask = 0b11111; + break; + case 1: + usart->char_mask = 0b111111; + break; + case 2: + usart->char_mask = 0b1111111; + break; + case 3: + usart->char_mask = 0b11111111; + break; + case 4: + /* Fallthrough. */ + case 5: + /* Fallthrough. */ + case 6: + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: Reserved character size 0x%x\n", + __func__, + mode); + break; + case 7: + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: Nine bit character size not supported (forcing eight)\n", + __func__); + usart->char_mask = 0b11111111; + break; + default: + assert(0); + } +} + +static void avr_usart_reset(DeviceState *dev) +{ + AVRUsartState *usart = AVR_USART(dev); + usart->data_valid = false; + usart->csra = 0b00100000; + usart->csrb = 0b00000000; + usart->csrc = 0b00000110; + usart->brrl = 0; + usart->brrh = 0; + update_char_mask(usart); + qemu_set_irq(usart->rxc_irq, 0); + qemu_set_irq(usart->txc_irq, 0); + qemu_set_irq(usart->dre_irq, 0); +} + +static uint64_t avr_usart_read(void *opaque, hwaddr addr, unsigned int size) +{ + AVRUsartState *usart = opaque; + uint8_t data; + assert(size == 1); + + if (!usart->enabled) { + return 0; + } + + switch (addr) { + case USART_DR: + if (!(usart->csrb & USART_CSRB_RXEN)) { + /* Receiver disabled, ignore. */ + return 0; + } + if (usart->data_valid) { + data = usart->data & usart->char_mask; + usart->data_valid = false; + } else { + data = 0; + } + usart->csra &= 0xff ^ USART_CSRA_RXC; + qemu_set_irq(usart->rxc_irq, 0); + qemu_chr_fe_accept_input(&usart->chr); + return data; + case USART_CSRA: + return usart->csra; + case USART_CSRB: + return usart->csrb; + case USART_CSRC: + return usart->csrc; + case USART_BRRL: + return usart->brrl; + case USART_BRRH: + return usart->brrh; + default: + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: Bad offset 0x%"HWADDR_PRIx"\n", + __func__, + addr); + } + return 0; +} + +static void avr_usart_write(void *opaque, hwaddr addr, uint64_t value, + unsigned int size) +{ + AVRUsartState *usart = opaque; + uint8_t mask; + uint8_t data; + assert((value & 0xff) == value); + assert(size == 1); + + if (!usart->enabled) { + return; + } + + switch (addr) { + case USART_DR: + if (!(usart->csrb & USART_CSRB_TXEN)) { + /* Transmitter disabled, ignore. */ + return; + } + usart->csra |= USART_CSRA_TXC; + usart->csra |= USART_CSRA_DRE; + if (usart->csrb & USART_CSRB_TXCIE) { + qemu_set_irq(usart->txc_irq, 1); + usart->csra &= 0xff ^ USART_CSRA_TXC; + } + if (usart->csrb & USART_CSRB_DREIE) { + qemu_set_irq(usart->dre_irq, 1); + } + data = value; + qemu_chr_fe_write_all(&usart->chr, &data, 1); + break; + case USART_CSRA: + mask = 0b01000011; + /* Mask read-only bits. */ + value = (value & mask) | (usart->csra & (0xff ^ mask)); + usart->csra = value; + if (value & USART_CSRA_TXC) { + usart->csra ^= USART_CSRA_TXC; + qemu_set_irq(usart->txc_irq, 0); + } + if (value & USART_CSRA_MPCM) { + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: MPCM not supported by USART\n", + __func__); + } + break; + case USART_CSRB: + mask = 0b11111101; + /* Mask read-only bits. */ + value = (value & mask) | (usart->csrb & (0xff ^ mask)); + usart->csrb = value; + if (!(value & USART_CSRB_RXEN)) { + /* Receiver disabled, flush input buffer. */ + usart->data_valid = false; + } + qemu_set_irq(usart->rxc_irq, + ((value & USART_CSRB_RXCIE) && + (usart->csra & USART_CSRA_RXC)) ? 1 : 0); + qemu_set_irq(usart->txc_irq, + ((value & USART_CSRB_TXCIE) && + (usart->csra & USART_CSRA_TXC)) ? 1 : 0); + qemu_set_irq(usart->dre_irq, + ((value & USART_CSRB_DREIE) && + (usart->csra & USART_CSRA_DRE)) ? 1 : 0); + update_char_mask(usart); + break; + case USART_CSRC: + usart->csrc = value; + if ((value & USART_CSRC_MSEL1) && (value & USART_CSRC_MSEL0)) { + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: SPI mode not supported by USART\n", + __func__); + } + if ((value & USART_CSRC_MSEL1) && !(value & USART_CSRC_MSEL0)) { + qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad USART mode\n", __func__); + } + if (!(value & USART_CSRC_PM1) && (value & USART_CSRC_PM0)) { + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: Bad USART parity mode\n", + __func__); + } + update_char_mask(usart); + break; + case USART_BRRL: + usart->brrl = value; + break; + case USART_BRRH: + usart->brrh = value & 0b00001111; + break; + default: + qemu_log_mask( + LOG_GUEST_ERROR, + "%s: Bad offset 0x%"HWADDR_PRIx"\n", + __func__, + addr); + } +} + +static const MemoryRegionOps avr_usart_ops = { + .read = avr_usart_read, + .write = avr_usart_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .impl = {.min_access_size = 1, .max_access_size = 1} +}; + +static Property avr_usart_properties[] = { + DEFINE_PROP_CHR("chardev", AVRUsartState, chr), + DEFINE_PROP_END_OF_LIST(), +}; + +static void avr_usart_pr(void *opaque, int irq, int level) +{ + AVRUsartState *s = AVR_USART(opaque); + + s->enabled = !level; + + if (!s->enabled) { + avr_usart_reset(DEVICE(s)); + } +} + +static void avr_usart_init(Object *obj) +{ + AVRUsartState *s = AVR_USART(obj); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rxc_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->dre_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->txc_irq); + memory_region_init_io(&s->mmio, obj, &avr_usart_ops, s, TYPE_AVR_USART, 7); + sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); + qdev_init_gpio_in(DEVICE(s), avr_usart_pr, 1); + s->enabled = true; +} + +static void avr_usart_realize(DeviceState *dev, Error **errp) +{ + AVRUsartState *s = AVR_USART(dev); + qemu_chr_fe_set_handlers(&s->chr, avr_usart_can_receive, + avr_usart_receive, NULL, NULL, + s, NULL, true); + avr_usart_reset(dev); +} + +static void avr_usart_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->reset = avr_usart_reset; + device_class_set_props(dc, avr_usart_properties); + dc->realize = avr_usart_realize; +} + +static const TypeInfo avr_usart_info = { + .name = TYPE_AVR_USART, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AVRUsartState), + .instance_init = avr_usart_init, + .class_init = avr_usart_class_init, +}; + +static void avr_usart_register_types(void) +{ + type_register_static(&avr_usart_info); +} + +type_init(avr_usart_register_types) diff --git a/hw/misc/Kconfig b/hw/misc/Kconfig index bdd77d8020..92c397ca07 100644 --- a/hw/misc/Kconfig +++ b/hw/misc/Kconfig @@ -131,4 +131,7 @@ config MAC_VIA select MOS6522 select ADB +config AVR_POWER + bool + source macio/Kconfig diff --git a/hw/misc/Makefile.objs b/hw/misc/Makefile.objs index 5aaca8a039..6be3d255ab 100644 --- a/hw/misc/Makefile.objs +++ b/hw/misc/Makefile.objs @@ -91,3 +91,5 @@ common-obj-$(CONFIG_NRF51_SOC) += nrf51_rng.o obj-$(CONFIG_MAC_VIA) += mac_via.o common-obj-$(CONFIG_GRLIB) += grlib_ahb_apb_pnp.o + +obj-$(CONFIG_AVR_POWER) += avr_power.o diff --git a/hw/misc/avr_power.c b/hw/misc/avr_power.c new file mode 100644 index 0000000000..a5412f2cfe --- /dev/null +++ b/hw/misc/avr_power.c @@ -0,0 +1,113 @@ +/* + * AVR Power Reduction Management + * + * Copyright (c) 2019-2020 Michael Rolnik + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "qemu/osdep.h" +#include "hw/misc/avr_power.h" +#include "qemu/log.h" +#include "hw/qdev-properties.h" +#include "hw/irq.h" +#include "trace.h" + +static void avr_mask_reset(DeviceState *dev) +{ + AVRMaskState *s = AVR_MASK(dev); + + s->val = 0x00; + + for (int i = 0; i < 8; i++) { + qemu_set_irq(s->irq[i], 0); + } +} + +static uint64_t avr_mask_read(void *opaque, hwaddr offset, unsigned size) +{ + assert(size == 1); + assert(offset == 0); + AVRMaskState *s = opaque; + + trace_avr_power_read(s->val); + + return (uint64_t)s->val; +} + +static void avr_mask_write(void *opaque, hwaddr offset, + uint64_t val64, unsigned size) +{ + assert(size == 1); + assert(offset == 0); + AVRMaskState *s = opaque; + uint8_t val8 = val64; + + trace_avr_power_write(val8); + s->val = val8; + for (int i = 0; i < 8; i++) { + qemu_set_irq(s->irq[i], (val8 & (1 << i)) != 0); + } +} + +static const MemoryRegionOps avr_mask_ops = { + .read = avr_mask_read, + .write = avr_mask_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .impl = { + .max_access_size = 1, + }, +}; + +static void avr_mask_init(Object *dev) +{ + AVRMaskState *s = AVR_MASK(dev); + SysBusDevice *busdev = SYS_BUS_DEVICE(dev); + + memory_region_init_io(&s->iomem, dev, &avr_mask_ops, s, TYPE_AVR_MASK, + 0x01); + sysbus_init_mmio(busdev, &s->iomem); + + for (int i = 0; i < 8; i++) { + sysbus_init_irq(busdev, &s->irq[i]); + } + s->val = 0x00; +} + +static void avr_mask_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->reset = avr_mask_reset; +} + +static const TypeInfo avr_mask_info = { + .name = TYPE_AVR_MASK, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AVRMaskState), + .class_init = avr_mask_class_init, + .instance_init = avr_mask_init, +}; + +static void avr_mask_register_types(void) +{ + type_register_static(&avr_mask_info); +} + +type_init(avr_mask_register_types) diff --git a/hw/misc/trace-events b/hw/misc/trace-events index ebea53735c..066752aa90 100644 --- a/hw/misc/trace-events +++ b/hw/misc/trace-events @@ -19,6 +19,10 @@ allwinner_h3_dramphy_write(uint64_t offset, uint64_t data, unsigned size) "write allwinner_sid_read(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32 allwinner_sid_write(uint64_t offset, uint64_t data, unsigned size) "offset 0x%" PRIx64 " data 0x%" PRIx64 " size %" PRIu32 +# avr_power.c +avr_power_read(uint8_t value) "power_reduc read value:%u" +avr_power_write(uint8_t value) "power_reduc write value:%u" + # eccmemctl.c ecc_mem_writel_mer(uint32_t val) "Write memory enable 0x%08x" ecc_mem_writel_mdr(uint32_t val) "Write memory delay 0x%08x" diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig index 59a667c503..8749edfb6a 100644 --- a/hw/timer/Kconfig +++ b/hw/timer/Kconfig @@ -41,3 +41,6 @@ config RENESAS_TMR config RENESAS_CMT bool + +config AVR_TIMER16 + bool diff --git a/hw/timer/Makefile.objs b/hw/timer/Makefile.objs index a39f6ec0c2..1303b13e0d 100644 --- a/hw/timer/Makefile.objs +++ b/hw/timer/Makefile.objs @@ -37,3 +37,5 @@ common-obj-$(CONFIG_CMSDK_APB_TIMER) += cmsdk-apb-timer.o common-obj-$(CONFIG_CMSDK_APB_DUALTIMER) += cmsdk-apb-dualtimer.o common-obj-$(CONFIG_MSF2) += mss-timer.o common-obj-$(CONFIG_RASPI) += bcm2835_systmr.o + +obj-$(CONFIG_AVR_TIMER16) += avr_timer16.o diff --git a/hw/timer/avr_timer16.c b/hw/timer/avr_timer16.c new file mode 100644 index 0000000000..c48555da52 --- /dev/null +++ b/hw/timer/avr_timer16.c @@ -0,0 +1,621 @@ +/* + * AVR 16-bit timer + * + * Copyright (c) 2018 University of Kent + * Author: Ed Robbins + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +/* + * Driver for 16 bit timers on 8 bit AVR devices. + * Note: + * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit + */ + +/* + * XXX TODO: Power Reduction Register support + * prescaler pause support + * PWM modes, GPIO, output capture pins, input compare pin + */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "qemu/log.h" +#include "hw/irq.h" +#include "hw/qdev-properties.h" +#include "hw/timer/avr_timer16.h" +#include "trace.h" + +/* Register offsets */ +#define T16_CRA 0x0 +#define T16_CRB 0x1 +#define T16_CRC 0x2 +#define T16_CNTL 0x4 +#define T16_CNTH 0x5 +#define T16_ICRL 0x6 +#define T16_ICRH 0x7 +#define T16_OCRAL 0x8 +#define T16_OCRAH 0x9 +#define T16_OCRBL 0xa +#define T16_OCRBH 0xb +#define T16_OCRCL 0xc +#define T16_OCRCH 0xd + +/* Field masks */ +#define T16_CRA_WGM01 0x3 +#define T16_CRA_COMC 0xc +#define T16_CRA_COMB 0x30 +#define T16_CRA_COMA 0xc0 +#define T16_CRA_OC_CONF \ + (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC) + +#define T16_CRB_CS 0x7 +#define T16_CRB_WGM23 0x18 +#define T16_CRB_ICES 0x40 +#define T16_CRB_ICNC 0x80 + +#define T16_CRC_FOCC 0x20 +#define T16_CRC_FOCB 0x40 +#define T16_CRC_FOCA 0x80 + +/* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */ +#define T16_INT_TOV 0x1 /* Timer overflow */ +#define T16_INT_OCA 0x2 /* Output compare A */ +#define T16_INT_OCB 0x4 /* Output compare B */ +#define T16_INT_OCC 0x8 /* Output compare C */ +#define T16_INT_IC 0x20 /* Input capture */ + +/* Clock source values */ +#define T16_CLKSRC_STOPPED 0 +#define T16_CLKSRC_DIV1 1 +#define T16_CLKSRC_DIV8 2 +#define T16_CLKSRC_DIV64 3 +#define T16_CLKSRC_DIV256 4 +#define T16_CLKSRC_DIV1024 5 +#define T16_CLKSRC_EXT_FALLING 6 +#define T16_CLKSRC_EXT_RISING 7 + +/* Timer mode values (not including PWM modes) */ +#define T16_MODE_NORMAL 0 +#define T16_MODE_CTC_OCRA 4 +#define T16_MODE_CTC_ICR 12 + +/* Accessors */ +#define CLKSRC(t16) (t16->crb & T16_CRB_CS) +#define MODE(t16) (((t16->crb & T16_CRB_WGM23) >> 1) | \ + (t16->cra & T16_CRA_WGM01)) +#define CNT(t16) VAL16(t16->cntl, t16->cnth) +#define OCRA(t16) VAL16(t16->ocral, t16->ocrah) +#define OCRB(t16) VAL16(t16->ocrbl, t16->ocrbh) +#define OCRC(t16) VAL16(t16->ocrcl, t16->ocrch) +#define ICR(t16) VAL16(t16->icrl, t16->icrh) + +/* Helper macros */ +#define VAL16(l, h) ((h << 8) | l) +#define DB_PRINT(fmt, args...) /* Nothing */ + +static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t) +{ + if (t16->period_ns == 0) { + return 0; + } + return t / t16->period_ns; +} + +static void avr_timer16_update_cnt(AVRTimer16State *t16) +{ + uint16_t cnt; + cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - + t16->reset_time_ns); + t16->cntl = (uint8_t)(cnt & 0xff); + t16->cnth = (uint8_t)((cnt & 0xff00) >> 8); +} + +static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16) +{ + t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - + CNT(t16) * t16->period_ns; +} + +static void avr_timer16_clock_reset(AVRTimer16State *t16) +{ + t16->cntl = 0; + t16->cnth = 0; + t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); +} + +static void avr_timer16_clksrc_update(AVRTimer16State *t16) +{ + uint16_t divider = 0; + switch (CLKSRC(t16)) { + case T16_CLKSRC_EXT_FALLING: + case T16_CLKSRC_EXT_RISING: + qemu_log_mask(LOG_UNIMP, "%s: external clock source unsupported\n", + __func__); + break; + case T16_CLKSRC_STOPPED: + break; + case T16_CLKSRC_DIV1: + divider = 1; + break; + case T16_CLKSRC_DIV8: + divider = 8; + break; + case T16_CLKSRC_DIV64: + divider = 64; + break; + case T16_CLKSRC_DIV256: + divider = 256; + break; + case T16_CLKSRC_DIV1024: + divider = 1024; + break; + default: + break; + } + if (divider) { + t16->freq_hz = t16->cpu_freq_hz / divider; + t16->period_ns = NANOSECONDS_PER_SECOND / t16->freq_hz; + trace_avr_timer16_clksrc_update(t16->freq_hz, t16->period_ns, + (uint64_t)(1e6 / t16->freq_hz)); + } +} + +static void avr_timer16_set_alarm(AVRTimer16State *t16) +{ + if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING || + CLKSRC(t16) == T16_CLKSRC_EXT_RISING || + CLKSRC(t16) == T16_CLKSRC_STOPPED) { + /* Timer is disabled or set to external clock source (unsupported) */ + return; + } + + uint64_t alarm_offset = 0xffff; + enum NextInterrupt next_interrupt = OVERFLOW; + + switch (MODE(t16)) { + case T16_MODE_NORMAL: + /* Normal mode */ + if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) && + (t16->imsk & T16_INT_OCA)) { + alarm_offset = OCRA(t16); + next_interrupt = COMPA; + } + break; + case T16_MODE_CTC_OCRA: + /* CTC mode, top = ocra */ + if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) { + alarm_offset = OCRA(t16); + next_interrupt = COMPA; + } + break; + case T16_MODE_CTC_ICR: + /* CTC mode, top = icr */ + if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) { + alarm_offset = ICR(t16); + next_interrupt = CAPT; + } + if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) && + (t16->imsk & T16_INT_OCA)) { + alarm_offset = OCRA(t16); + next_interrupt = COMPA; + } + break; + default: + qemu_log_mask(LOG_UNIMP, "%s: pwm modes are unsupported\n", + __func__); + return; + } + if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) && + (t16->imsk & T16_INT_OCB)) { + alarm_offset = OCRB(t16); + next_interrupt = COMPB; + } + if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) && + (t16->imsk & T16_INT_OCC)) { + alarm_offset = OCRB(t16); + next_interrupt = COMPC; + } + alarm_offset -= CNT(t16); + + t16->next_interrupt = next_interrupt; + uint64_t alarm_ns = + t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns); + timer_mod(t16->timer, alarm_ns); + + trace_avr_timer16_next_alarm(alarm_offset * t16->period_ns); +} + +static void avr_timer16_interrupt(void *opaque) +{ + AVRTimer16State *t16 = opaque; + uint8_t mode = MODE(t16); + + avr_timer16_update_cnt(t16); + + if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING || + CLKSRC(t16) == T16_CLKSRC_EXT_RISING || + CLKSRC(t16) == T16_CLKSRC_STOPPED) { + /* Timer is disabled or set to external clock source (unsupported) */ + return; + } + + trace_avr_timer16_interrupt_count(CNT(t16)); + + /* Counter overflow */ + if (t16->next_interrupt == OVERFLOW) { + trace_avr_timer16_interrupt_overflow("counter 0xffff"); + avr_timer16_clock_reset(t16); + if (t16->imsk & T16_INT_TOV) { + t16->ifr |= T16_INT_TOV; + qemu_set_irq(t16->ovf_irq, 1); + } + } + /* Check for ocra overflow in CTC mode */ + if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) { + trace_avr_timer16_interrupt_overflow("CTC OCRA"); + avr_timer16_clock_reset(t16); + } + /* Check for icr overflow in CTC mode */ + if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) { + trace_avr_timer16_interrupt_overflow("CTC ICR"); + avr_timer16_clock_reset(t16); + if (t16->imsk & T16_INT_IC) { + t16->ifr |= T16_INT_IC; + qemu_set_irq(t16->capt_irq, 1); + } + } + /* Check for output compare interrupts */ + if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) { + t16->ifr |= T16_INT_OCA; + qemu_set_irq(t16->compa_irq, 1); + } + if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) { + t16->ifr |= T16_INT_OCB; + qemu_set_irq(t16->compb_irq, 1); + } + if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) { + t16->ifr |= T16_INT_OCC; + qemu_set_irq(t16->compc_irq, 1); + } + avr_timer16_set_alarm(t16); +} + +static void avr_timer16_reset(DeviceState *dev) +{ + AVRTimer16State *t16 = AVR_TIMER16(dev); + + avr_timer16_clock_reset(t16); + avr_timer16_clksrc_update(t16); + avr_timer16_set_alarm(t16); + + qemu_set_irq(t16->capt_irq, 0); + qemu_set_irq(t16->compa_irq, 0); + qemu_set_irq(t16->compb_irq, 0); + qemu_set_irq(t16->compc_irq, 0); + qemu_set_irq(t16->ovf_irq, 0); +} + +static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + uint8_t retval = 0; + + switch (offset) { + case T16_CRA: + retval = t16->cra; + break; + case T16_CRB: + retval = t16->crb; + break; + case T16_CRC: + retval = t16->crc; + break; + case T16_CNTL: + avr_timer16_update_cnt(t16); + t16->rtmp = t16->cnth; + retval = t16->cntl; + break; + case T16_CNTH: + retval = t16->rtmp; + break; + case T16_ICRL: + /* + * The timer copies cnt to icr when the input capture pin changes + * state or when the analog comparator has a match. We don't + * emulate this behaviour. We do support it's use for defining a + * TOP value in T16_MODE_CTC_ICR + */ + t16->rtmp = t16->icrh; + retval = t16->icrl; + break; + case T16_ICRH: + retval = t16->rtmp; + break; + case T16_OCRAL: + retval = t16->ocral; + break; + case T16_OCRAH: + retval = t16->ocrah; + break; + case T16_OCRBL: + retval = t16->ocrbl; + break; + case T16_OCRBH: + retval = t16->ocrbh; + break; + case T16_OCRCL: + retval = t16->ocrcl; + break; + case T16_OCRCH: + retval = t16->ocrch; + break; + default: + break; + } + trace_avr_timer16_read(offset, retval); + + return (uint64_t)retval; +} + +static void avr_timer16_write(void *opaque, hwaddr offset, + uint64_t val64, unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + uint8_t val8 = (uint8_t)val64; + uint8_t prev_clk_src = CLKSRC(t16); + + trace_avr_timer16_write(offset, val8); + + switch (offset) { + case T16_CRA: + t16->cra = val8; + if (t16->cra & T16_CRA_OC_CONF) { + qemu_log_mask(LOG_UNIMP, "%s: output compare pins unsupported\n", + __func__); + } + break; + case T16_CRB: + t16->crb = val8; + if (t16->crb & T16_CRB_ICNC) { + qemu_log_mask(LOG_UNIMP, + "%s: input capture noise canceller unsupported\n", + __func__); + } + if (t16->crb & T16_CRB_ICES) { + qemu_log_mask(LOG_UNIMP, "%s: input capture unsupported\n", + __func__); + } + if (CLKSRC(t16) != prev_clk_src) { + avr_timer16_clksrc_update(t16); + if (prev_clk_src == T16_CLKSRC_STOPPED) { + t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); + } + } + break; + case T16_CRC: + t16->crc = val8; + qemu_log_mask(LOG_UNIMP, "%s: output compare pins unsupported\n", + __func__); + break; + case T16_CNTL: + /* + * CNT is the 16-bit counter value, it must be read/written via + * a temporary register (rtmp) to make the read/write atomic. + */ + /* ICR also has this behaviour, and shares rtmp */ + /* + * Writing CNT blocks compare matches for one clock cycle. + * Writing CNT to TOP or to an OCR value (if in use) will + * skip the relevant interrupt + */ + t16->cntl = val8; + t16->cnth = t16->rtmp; + avr_timer16_recalc_reset_time(t16); + break; + case T16_CNTH: + t16->rtmp = val8; + break; + case T16_ICRL: + /* ICR can only be written in mode T16_MODE_CTC_ICR */ + if (MODE(t16) == T16_MODE_CTC_ICR) { + t16->icrl = val8; + t16->icrh = t16->rtmp; + } + break; + case T16_ICRH: + if (MODE(t16) == T16_MODE_CTC_ICR) { + t16->rtmp = val8; + } + break; + case T16_OCRAL: + /* + * OCRn cause the relevant output compare flag to be raised, and + * trigger an interrupt, when CNT is equal to the value here + */ + t16->ocral = val8; + break; + case T16_OCRAH: + t16->ocrah = val8; + break; + case T16_OCRBL: + t16->ocrbl = val8; + break; + case T16_OCRBH: + t16->ocrbh = val8; + break; + case T16_OCRCL: + t16->ocrcl = val8; + break; + case T16_OCRCH: + t16->ocrch = val8; + break; + default: + break; + } + avr_timer16_set_alarm(t16); +} + +static uint64_t avr_timer16_imsk_read(void *opaque, + hwaddr offset, + unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + trace_avr_timer16_read_imsk(offset ? 0 : t16->imsk); + if (offset != 0) { + return 0; + } + return t16->imsk; +} + +static void avr_timer16_imsk_write(void *opaque, hwaddr offset, + uint64_t val64, unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + trace_avr_timer16_write_imsk(val64); + if (offset != 0) { + return; + } + t16->imsk = (uint8_t)val64; +} + +static uint64_t avr_timer16_ifr_read(void *opaque, + hwaddr offset, + unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + trace_avr_timer16_read_ifr(offset ? 0 : t16->ifr); + if (offset != 0) { + return 0; + } + return t16->ifr; +} + +static void avr_timer16_ifr_write(void *opaque, hwaddr offset, + uint64_t val64, unsigned size) +{ + assert(size == 1); + AVRTimer16State *t16 = opaque; + trace_avr_timer16_write_imsk(val64); + if (offset != 0) { + return; + } + t16->ifr = (uint8_t)val64; +} + +static const MemoryRegionOps avr_timer16_ops = { + .read = avr_timer16_read, + .write = avr_timer16_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .impl = {.max_access_size = 1} +}; + +static const MemoryRegionOps avr_timer16_imsk_ops = { + .read = avr_timer16_imsk_read, + .write = avr_timer16_imsk_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .impl = {.max_access_size = 1} +}; + +static const MemoryRegionOps avr_timer16_ifr_ops = { + .read = avr_timer16_ifr_read, + .write = avr_timer16_ifr_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .impl = {.max_access_size = 1} +}; + +static Property avr_timer16_properties[] = { + DEFINE_PROP_UINT8("id", struct AVRTimer16State, id, 0), + DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State, + cpu_freq_hz, 0), + DEFINE_PROP_END_OF_LIST(), +}; + +static void avr_timer16_pr(void *opaque, int irq, int level) +{ + AVRTimer16State *s = AVR_TIMER16(opaque); + + s->enabled = !level; + + if (!s->enabled) { + avr_timer16_reset(DEVICE(s)); + } +} + +static void avr_timer16_init(Object *obj) +{ + AVRTimer16State *s = AVR_TIMER16(obj); + + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq); + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq); + + memory_region_init_io(&s->iomem, obj, &avr_timer16_ops, + s, "avr-timer16", 0xe); + memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops, + s, "avr-timer16-intmask", 0x1); + memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops, + s, "avr-timer16-intflag", 0x1); + + sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); + sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem); + sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem); + qdev_init_gpio_in(DEVICE(s), avr_timer16_pr, 1); +} + +static void avr_timer16_realize(DeviceState *dev, Error **errp) +{ + AVRTimer16State *s = AVR_TIMER16(dev); + + if (s->cpu_freq_hz == 0) { + error_setg(errp, "AVR timer16: cpu-frequency-hz property must be set"); + return; + } + + s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s); + s->enabled = true; +} + +static void avr_timer16_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->reset = avr_timer16_reset; + dc->realize = avr_timer16_realize; + device_class_set_props(dc, avr_timer16_properties); +} + +static const TypeInfo avr_timer16_info = { + .name = TYPE_AVR_TIMER16, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AVRTimer16State), + .instance_init = avr_timer16_init, + .class_init = avr_timer16_class_init, +}; + +static void avr_timer16_register_types(void) +{ + type_register_static(&avr_timer16_info); +} + +type_init(avr_timer16_register_types) diff --git a/hw/timer/trace-events b/hw/timer/trace-events index 866c9f546a..447b7c405b 100644 --- a/hw/timer/trace-events +++ b/hw/timer/trace-events @@ -75,3 +75,15 @@ nrf51_timer_set_count(uint8_t timer_id, uint8_t counter_id, uint32_t value) "tim bcm2835_systmr_irq(bool enable) "timer irq state %u" bcm2835_systmr_read(uint64_t offset, uint64_t data) "timer read: offset 0x%" PRIx64 " data 0x%" PRIx64 bcm2835_systmr_write(uint64_t offset, uint64_t data) "timer write: offset 0x%" PRIx64 " data 0x%" PRIx64 + +# avr_timer16.c +avr_timer16_read(uint8_t addr, uint8_t value) "timer16 read addr:%u value:%u" +avr_timer16_read_ifr(uint8_t value) "timer16 read addr:ifr value:%u" +avr_timer16_read_imsk(uint8_t value) "timer16 read addr:imsk value:%u" +avr_timer16_write(uint8_t addr, uint8_t value) "timer16 write addr:%u value:%u" +avr_timer16_write_ifr(uint8_t value) "timer16 write addr:ifr value:%u" +avr_timer16_write_imsk(uint8_t value) "timer16 write addr:imsk value:%u" +avr_timer16_interrupt_count(uint8_t cnt) "count: %u" +avr_timer16_interrupt_overflow(const char *reason) "overflow: %s" +avr_timer16_next_alarm(uint64_t delay_ns) "next alarm: %" PRIu64 " ns from now" +avr_timer16_clksrc_update(uint64_t freq_hz, uint64_t period_ns, uint64_t delay_s) "timer frequency: %" PRIu64 " Hz, period: %" PRIu64 " ns (%" PRId64 " us)" diff --git a/include/disas/dis-asm.h b/include/disas/dis-asm.h index c5f9fa08ab..9856bf7921 100644 --- a/include/disas/dis-asm.h +++ b/include/disas/dis-asm.h @@ -211,6 +211,25 @@ enum bfd_architecture #define bfd_mach_m32r 0 /* backwards compatibility */ bfd_arch_mn10200, /* Matsushita MN10200 */ bfd_arch_mn10300, /* Matsushita MN10300 */ + bfd_arch_avr, /* AVR microcontrollers */ +#define bfd_mach_avr1 1 +#define bfd_mach_avr2 2 +#define bfd_mach_avr25 25 +#define bfd_mach_avr3 3 +#define bfd_mach_avr31 31 +#define bfd_mach_avr35 35 +#define bfd_mach_avr4 4 +#define bfd_mach_avr5 5 +#define bfd_mach_avr51 51 +#define bfd_mach_avr6 6 +#define bfd_mach_avrtiny 100 +#define bfd_mach_avrxmega1 101 +#define bfd_mach_avrxmega2 102 +#define bfd_mach_avrxmega3 103 +#define bfd_mach_avrxmega4 104 +#define bfd_mach_avrxmega5 105 +#define bfd_mach_avrxmega6 106 +#define bfd_mach_avrxmega7 107 bfd_arch_cris, /* Axis CRIS */ #define bfd_mach_cris_v0_v10 255 #define bfd_mach_cris_v32 32 diff --git a/include/elf.h b/include/elf.h index 8fbfe60e09..5b06b55f28 100644 --- a/include/elf.h +++ b/include/elf.h @@ -160,6 +160,8 @@ typedef struct mips_elf_abiflags_v0 { #define EM_CRIS 76 /* Axis Communications 32-bit embedded processor */ +#define EM_AVR 83 /* AVR 8-bit microcontroller */ + #define EM_V850 87 /* NEC v850 */ #define EM_H8_300H 47 /* Hitachi H8/300H */ @@ -202,6 +204,8 @@ typedef struct mips_elf_abiflags_v0 { #define EM_MOXIE 223 /* Moxie processor family */ #define EM_MOXIE_OLD 0xFEED +#define EF_AVR_MACH 0x7F /* Mask for AVR e_flags to get core type */ + /* This is the info that is needed to parse the dynamic section of the file */ #define DT_NULL 0 #define DT_NEEDED 1 diff --git a/include/hw/char/avr_usart.h b/include/hw/char/avr_usart.h new file mode 100644 index 0000000000..5739aaf26f --- /dev/null +++ b/include/hw/char/avr_usart.h @@ -0,0 +1,93 @@ +/* + * AVR USART + * + * Copyright (c) 2018 University of Kent + * Author: Sarah Harris + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#ifndef HW_CHAR_AVR_USART_H +#define HW_CHAR_AVR_USART_H + +#include "hw/sysbus.h" +#include "chardev/char-fe.h" +#include "hw/hw.h" + +/* Offsets of registers. */ +#define USART_DR 0x06 +#define USART_CSRA 0x00 +#define USART_CSRB 0x01 +#define USART_CSRC 0x02 +#define USART_BRRH 0x05 +#define USART_BRRL 0x04 + +/* Relevant bits in regiters. */ +#define USART_CSRA_RXC (1 << 7) +#define USART_CSRA_TXC (1 << 6) +#define USART_CSRA_DRE (1 << 5) +#define USART_CSRA_MPCM (1 << 0) + +#define USART_CSRB_RXCIE (1 << 7) +#define USART_CSRB_TXCIE (1 << 6) +#define USART_CSRB_DREIE (1 << 5) +#define USART_CSRB_RXEN (1 << 4) +#define USART_CSRB_TXEN (1 << 3) +#define USART_CSRB_CSZ2 (1 << 2) +#define USART_CSRB_RXB8 (1 << 1) +#define USART_CSRB_TXB8 (1 << 0) + +#define USART_CSRC_MSEL1 (1 << 7) +#define USART_CSRC_MSEL0 (1 << 6) +#define USART_CSRC_PM1 (1 << 5) +#define USART_CSRC_PM0 (1 << 4) +#define USART_CSRC_CSZ1 (1 << 2) +#define USART_CSRC_CSZ0 (1 << 1) + +#define TYPE_AVR_USART "avr-usart" +#define AVR_USART(obj) \ + OBJECT_CHECK(AVRUsartState, (obj), TYPE_AVR_USART) + +typedef struct { + /* <private> */ + SysBusDevice parent_obj; + + /* <public> */ + MemoryRegion mmio; + + CharBackend chr; + + bool enabled; + + uint8_t data; + bool data_valid; + uint8_t char_mask; + /* Control and Status Registers */ + uint8_t csra; + uint8_t csrb; + uint8_t csrc; + /* Baud Rate Registers (low/high byte) */ + uint8_t brrh; + uint8_t brrl; + + /* Receive Complete */ + qemu_irq rxc_irq; + /* Transmit Complete */ + qemu_irq txc_irq; + /* Data Register Empty */ + qemu_irq dre_irq; +} AVRUsartState; + +#endif /* HW_CHAR_AVR_USART_H */ diff --git a/include/hw/misc/avr_power.h b/include/hw/misc/avr_power.h new file mode 100644 index 0000000000..e08e44f629 --- /dev/null +++ b/include/hw/misc/avr_power.h @@ -0,0 +1,46 @@ +/* + * AVR Power Reduction Management + * + * Copyright (c) 2019-2020 Michael Rolnik + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#ifndef HW_MISC_AVR_POWER_H +#define HW_MISC_AVR_POWER_H + +#include "hw/sysbus.h" +#include "hw/hw.h" + + +#define TYPE_AVR_MASK "avr-power" +#define AVR_MASK(obj) OBJECT_CHECK(AVRMaskState, (obj), TYPE_AVR_MASK) + +typedef struct { + /* <private> */ + SysBusDevice parent_obj; + + /* <public> */ + MemoryRegion iomem; + + uint8_t val; + qemu_irq irq[8]; +} AVRMaskState; + +#endif /* HW_MISC_AVR_POWER_H */ diff --git a/include/hw/timer/avr_timer16.h b/include/hw/timer/avr_timer16.h new file mode 100644 index 0000000000..982019d242 --- /dev/null +++ b/include/hw/timer/avr_timer16.h @@ -0,0 +1,94 @@ +/* + * AVR 16-bit timer + * + * Copyright (c) 2018 University of Kent + * Author: Ed Robbins + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +/* + * Driver for 16 bit timers on 8 bit AVR devices. + * Note: + * On ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit + */ + +#ifndef HW_TIMER_AVR_TIMER16_H +#define HW_TIMER_AVR_TIMER16_H + +#include "hw/sysbus.h" +#include "qemu/timer.h" +#include "hw/hw.h" + +enum NextInterrupt { + OVERFLOW, + COMPA, + COMPB, + COMPC, + CAPT +}; + +#define TYPE_AVR_TIMER16 "avr-timer16" +#define AVR_TIMER16(obj) \ + OBJECT_CHECK(AVRTimer16State, (obj), TYPE_AVR_TIMER16) + +typedef struct AVRTimer16State { + /* <private> */ + SysBusDevice parent_obj; + + /* <public> */ + MemoryRegion iomem; + MemoryRegion imsk_iomem; + MemoryRegion ifr_iomem; + QEMUTimer *timer; + qemu_irq capt_irq; + qemu_irq compa_irq; + qemu_irq compb_irq; + qemu_irq compc_irq; + qemu_irq ovf_irq; + + bool enabled; + + /* registers */ + uint8_t cra; + uint8_t crb; + uint8_t crc; + uint8_t cntl; + uint8_t cnth; + uint8_t icrl; + uint8_t icrh; + uint8_t ocral; + uint8_t ocrah; + uint8_t ocrbl; + uint8_t ocrbh; + uint8_t ocrcl; + uint8_t ocrch; + /* + * Reads and writes to CNT and ICR utilise a bizarre temporary + * register, which we emulate + */ + uint8_t rtmp; + uint8_t imsk; + uint8_t ifr; + + uint8_t id; + uint64_t cpu_freq_hz; + uint64_t freq_hz; + uint64_t period_ns; + uint64_t reset_time_ns; + enum NextInterrupt next_interrupt; +} AVRTimer16State; + +#endif /* HW_TIMER_AVR_TIMER16_H */ diff --git a/include/sysemu/arch_init.h b/include/sysemu/arch_init.h index 71a7a285ee..54f069d491 100644 --- a/include/sysemu/arch_init.h +++ b/include/sysemu/arch_init.h @@ -25,6 +25,7 @@ enum { QEMU_ARCH_HPPA = (1 << 18), QEMU_ARCH_RISCV = (1 << 19), QEMU_ARCH_RX = (1 << 20), + QEMU_ARCH_AVR = (1 << 21), QEMU_ARCH_NONE = (1 << 31), }; diff --git a/qapi/machine.json b/qapi/machine.json index ff7b5032e3..f59144023c 100644 --- a/qapi/machine.json +++ b/qapi/machine.json @@ -17,6 +17,7 @@ # being. # # @rx: since 5.0 +# @avr: since 5.1 # # Notes: The resulting QMP strings can be appended to the "qemu-system-" # prefix to produce the corresponding QEMU executable name. This @@ -25,7 +26,7 @@ # Since: 3.0 ## { 'enum' : 'SysEmuTarget', - 'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32', + 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc', 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', diff --git a/softmmu/arch_init.c b/softmmu/arch_init.c index 8afea4748b..7fd5c09b2b 100644 --- a/softmmu/arch_init.c +++ b/softmmu/arch_init.c @@ -90,6 +90,8 @@ int graphic_depth = 32; #define QEMU_ARCH QEMU_ARCH_UNICORE32 #elif defined(TARGET_XTENSA) #define QEMU_ARCH QEMU_ARCH_XTENSA +#elif defined(TARGET_AVR) +#define QEMU_ARCH QEMU_ARCH_AVR #endif const uint32_t arch_type = QEMU_ARCH; diff --git a/target/avr/Makefile.objs b/target/avr/Makefile.objs new file mode 100644 index 0000000000..6e35ba2c5c --- /dev/null +++ b/target/avr/Makefile.objs @@ -0,0 +1,34 @@ +# +# QEMU AVR +# +# Copyright (c) 2016-2020 Michael Rolnik +# +# This library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2.1 of the License, or (at your option) any later version. +# +# This library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this library; if not, see +# <http://www.gnu.org/licenses/lgpl-2.1.html> +# + +DECODETREE = $(SRC_PATH)/scripts/decodetree.py +decode-y = $(SRC_PATH)/target/avr/insn.decode + +target/avr/decode_insn.inc.c: $(decode-y) $(DECODETREE) + $(call quiet-command, \ + $(PYTHON) $(DECODETREE) -o $@ --decode decode_insn --insnwidth 16 $<, \ + "GEN", $(TARGET_DIR)$@) + +target/avr/translate.o: target/avr/decode_insn.inc.c + +obj-y += translate.o cpu.o helper.o +obj-y += gdbstub.o +obj-y += disas.o +obj-$(CONFIG_SOFTMMU) += machine.o diff --git a/target/avr/cpu-param.h b/target/avr/cpu-param.h new file mode 100644 index 0000000000..7ef4e7c679 --- /dev/null +++ b/target/avr/cpu-param.h @@ -0,0 +1,36 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#ifndef AVR_CPU_PARAM_H +#define AVR_CPU_PARAM_H + +#define TARGET_LONG_BITS 32 +/* + * TARGET_PAGE_BITS cannot be more than 8 bits because + * 1. all IO registers occupy [0x0000 .. 0x00ff] address range, and they + * should be implemented as a device and not memory + * 2. SRAM starts at the address 0x0100 + */ +#define TARGET_PAGE_BITS 8 +#define TARGET_PHYS_ADDR_SPACE_BITS 24 +#define TARGET_VIRT_ADDR_SPACE_BITS 24 +#define NB_MMU_MODES 2 + +#endif diff --git a/target/avr/cpu-qom.h b/target/avr/cpu-qom.h new file mode 100644 index 0000000000..d23ad43a99 --- /dev/null +++ b/target/avr/cpu-qom.h @@ -0,0 +1,53 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#ifndef QEMU_AVR_QOM_H +#define QEMU_AVR_QOM_H + +#include "hw/core/cpu.h" + +#define TYPE_AVR_CPU "avr-cpu" + +#define AVR_CPU_CLASS(klass) \ + OBJECT_CLASS_CHECK(AVRCPUClass, (klass), TYPE_AVR_CPU) +#define AVR_CPU(obj) \ + OBJECT_CHECK(AVRCPU, (obj), TYPE_AVR_CPU) +#define AVR_CPU_GET_CLASS(obj) \ + OBJECT_GET_CLASS(AVRCPUClass, (obj), TYPE_AVR_CPU) + +/** + * AVRCPUClass: + * @parent_realize: The parent class' realize handler. + * @parent_reset: The parent class' reset handler. + * @vr: Version Register value. + * + * A AVR CPU model. + */ +typedef struct AVRCPUClass { + /*< private >*/ + CPUClass parent_class; + /*< public >*/ + DeviceRealize parent_realize; + DeviceReset parent_reset; +} AVRCPUClass; + +typedef struct AVRCPU AVRCPU; + +#endif /* !defined (QEMU_AVR_CPU_QOM_H) */ diff --git a/target/avr/cpu.c b/target/avr/cpu.c new file mode 100644 index 0000000000..5d9c4ad5bf --- /dev/null +++ b/target/avr/cpu.c @@ -0,0 +1,366 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2019-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "qemu/qemu-print.h" +#include "exec/exec-all.h" +#include "cpu.h" +#include "disas/dis-asm.h" + +static void avr_cpu_set_pc(CPUState *cs, vaddr value) +{ + AVRCPU *cpu = AVR_CPU(cs); + + cpu->env.pc_w = value / 2; /* internally PC points to words */ +} + +static bool avr_cpu_has_work(CPUState *cs) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET)) + && cpu_interrupts_enabled(env); +} + +static void avr_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + env->pc_w = tb->pc / 2; /* internally PC points to words */ +} + +static void avr_cpu_reset(DeviceState *ds) +{ + CPUState *cs = CPU(ds); + AVRCPU *cpu = AVR_CPU(cs); + AVRCPUClass *mcc = AVR_CPU_GET_CLASS(cpu); + CPUAVRState *env = &cpu->env; + + mcc->parent_reset(ds); + + env->pc_w = 0; + env->sregI = 1; + env->sregC = 0; + env->sregZ = 0; + env->sregN = 0; + env->sregV = 0; + env->sregS = 0; + env->sregH = 0; + env->sregT = 0; + + env->rampD = 0; + env->rampX = 0; + env->rampY = 0; + env->rampZ = 0; + env->eind = 0; + env->sp = 0; + + env->skip = 0; + + memset(env->r, 0, sizeof(env->r)); +} + +static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info) +{ + info->mach = bfd_arch_avr; + info->print_insn = avr_print_insn; +} + +static void avr_cpu_realizefn(DeviceState *dev, Error **errp) +{ + CPUState *cs = CPU(dev); + AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev); + Error *local_err = NULL; + + cpu_exec_realizefn(cs, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + qemu_init_vcpu(cs); + cpu_reset(cs); + + mcc->parent_realize(dev, errp); +} + +static void avr_cpu_set_int(void *opaque, int irq, int level) +{ + AVRCPU *cpu = opaque; + CPUAVRState *env = &cpu->env; + CPUState *cs = CPU(cpu); + uint64_t mask = (1ull << irq); + + if (level) { + env->intsrc |= mask; + cpu_interrupt(cs, CPU_INTERRUPT_HARD); + } else { + env->intsrc &= ~mask; + if (env->intsrc == 0) { + cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); + } + } +} + +static void avr_cpu_initfn(Object *obj) +{ + AVRCPU *cpu = AVR_CPU(obj); + + cpu_set_cpustate_pointers(cpu); + + /* Set the number of interrupts supported by the CPU. */ + qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, + sizeof(cpu->env.intsrc) * 8); +} + +static ObjectClass *avr_cpu_class_by_name(const char *cpu_model) +{ + ObjectClass *oc; + + oc = object_class_by_name(cpu_model); + if (object_class_dynamic_cast(oc, TYPE_AVR_CPU) == NULL || + object_class_is_abstract(oc)) { + oc = NULL; + } + return oc; +} + +static void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + int i; + + qemu_fprintf(f, "\n"); + qemu_fprintf(f, "PC: %06x\n", env->pc_w * 2); /* PC points to words */ + qemu_fprintf(f, "SP: %04x\n", env->sp); + qemu_fprintf(f, "rampD: %02x\n", env->rampD >> 16); + qemu_fprintf(f, "rampX: %02x\n", env->rampX >> 16); + qemu_fprintf(f, "rampY: %02x\n", env->rampY >> 16); + qemu_fprintf(f, "rampZ: %02x\n", env->rampZ >> 16); + qemu_fprintf(f, "EIND: %02x\n", env->eind >> 16); + qemu_fprintf(f, "X: %02x%02x\n", env->r[27], env->r[26]); + qemu_fprintf(f, "Y: %02x%02x\n", env->r[29], env->r[28]); + qemu_fprintf(f, "Z: %02x%02x\n", env->r[31], env->r[30]); + qemu_fprintf(f, "SREG: [ %c %c %c %c %c %c %c %c ]\n", + env->sregI ? 'I' : '-', + env->sregT ? 'T' : '-', + env->sregH ? 'H' : '-', + env->sregS ? 'S' : '-', + env->sregV ? 'V' : '-', + env->sregN ? '-' : 'N', /* Zf has negative logic */ + env->sregZ ? 'Z' : '-', + env->sregC ? 'I' : '-'); + qemu_fprintf(f, "SKIP: %02x\n", env->skip); + + qemu_fprintf(f, "\n"); + for (i = 0; i < ARRAY_SIZE(env->r); i++) { + qemu_fprintf(f, "R[%02d]: %02x ", i, env->r[i]); + + if ((i % 8) == 7) { + qemu_fprintf(f, "\n"); + } + } + qemu_fprintf(f, "\n"); +} + +static void avr_cpu_class_init(ObjectClass *oc, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(oc); + CPUClass *cc = CPU_CLASS(oc); + AVRCPUClass *mcc = AVR_CPU_CLASS(oc); + + mcc->parent_realize = dc->realize; + dc->realize = avr_cpu_realizefn; + + device_class_set_parent_reset(dc, avr_cpu_reset, &mcc->parent_reset); + + cc->class_by_name = avr_cpu_class_by_name; + + cc->has_work = avr_cpu_has_work; + cc->do_interrupt = avr_cpu_do_interrupt; + cc->cpu_exec_interrupt = avr_cpu_exec_interrupt; + cc->dump_state = avr_cpu_dump_state; + cc->set_pc = avr_cpu_set_pc; + cc->memory_rw_debug = avr_cpu_memory_rw_debug; + cc->get_phys_page_debug = avr_cpu_get_phys_page_debug; + cc->tlb_fill = avr_cpu_tlb_fill; + cc->vmsd = &vms_avr_cpu; + cc->disas_set_info = avr_cpu_disas_set_info; + cc->tcg_initialize = avr_cpu_tcg_init; + cc->synchronize_from_tb = avr_cpu_synchronize_from_tb; + cc->gdb_read_register = avr_cpu_gdb_read_register; + cc->gdb_write_register = avr_cpu_gdb_write_register; + cc->gdb_num_core_regs = 35; + cc->gdb_core_xml_file = "avr-cpu.xml"; +} + +/* + * Setting features of AVR core type avr5 + * -------------------------------------- + * + * This type of AVR core is present in the following AVR MCUs: + * + * ata5702m322, ata5782, ata5790, ata5790n, ata5791, ata5795, ata5831, ata6613c, + * ata6614q, ata8210, ata8510, atmega16, atmega16a, atmega161, atmega162, + * atmega163, atmega164a, atmega164p, atmega164pa, atmega165, atmega165a, + * atmega165p, atmega165pa, atmega168, atmega168a, atmega168p, atmega168pa, + * atmega168pb, atmega169, atmega169a, atmega169p, atmega169pa, atmega16hvb, + * atmega16hvbrevb, atmega16m1, atmega16u4, atmega32a, atmega32, atmega323, + * atmega324a, atmega324p, atmega324pa, atmega325, atmega325a, atmega325p, + * atmega325pa, atmega3250, atmega3250a, atmega3250p, atmega3250pa, atmega328, + * atmega328p, atmega328pb, atmega329, atmega329a, atmega329p, atmega329pa, + * atmega3290, atmega3290a, atmega3290p, atmega3290pa, atmega32c1, atmega32m1, + * atmega32u4, atmega32u6, atmega406, atmega64, atmega64a, atmega640, atmega644, + * atmega644a, atmega644p, atmega644pa, atmega645, atmega645a, atmega645p, + * atmega6450, atmega6450a, atmega6450p, atmega649, atmega649a, atmega649p, + * atmega6490, atmega16hva, atmega16hva2, atmega32hvb, atmega6490a, atmega6490p, + * atmega64c1, atmega64m1, atmega64hve, atmega64hve2, atmega64rfr2, + * atmega644rfr2, atmega32hvbrevb, at90can32, at90can64, at90pwm161, at90pwm216, + * at90pwm316, at90scr100, at90usb646, at90usb647, at94k, m3000 + */ +static void avr_avr5_initfn(Object *obj) +{ + AVRCPU *cpu = AVR_CPU(obj); + CPUAVRState *env = &cpu->env; + + set_avr_feature(env, AVR_FEATURE_LPM); + set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); + set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); + set_avr_feature(env, AVR_FEATURE_SRAM); + set_avr_feature(env, AVR_FEATURE_BREAK); + + set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); + set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); + set_avr_feature(env, AVR_FEATURE_JMP_CALL); + set_avr_feature(env, AVR_FEATURE_LPMX); + set_avr_feature(env, AVR_FEATURE_MOVW); + set_avr_feature(env, AVR_FEATURE_MUL); +} + +/* + * Setting features of AVR core type avr51 + * -------------------------------------- + * + * This type of AVR core is present in the following AVR MCUs: + * + * atmega128, atmega128a, atmega1280, atmega1281, atmega1284, atmega1284p, + * atmega128rfa1, atmega128rfr2, atmega1284rfr2, at90can128, at90usb1286, + * at90usb1287 + */ +static void avr_avr51_initfn(Object *obj) +{ + AVRCPU *cpu = AVR_CPU(obj); + CPUAVRState *env = &cpu->env; + + set_avr_feature(env, AVR_FEATURE_LPM); + set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); + set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); + set_avr_feature(env, AVR_FEATURE_SRAM); + set_avr_feature(env, AVR_FEATURE_BREAK); + + set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); + set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); + set_avr_feature(env, AVR_FEATURE_RAMPZ); + set_avr_feature(env, AVR_FEATURE_ELPMX); + set_avr_feature(env, AVR_FEATURE_ELPM); + set_avr_feature(env, AVR_FEATURE_JMP_CALL); + set_avr_feature(env, AVR_FEATURE_LPMX); + set_avr_feature(env, AVR_FEATURE_MOVW); + set_avr_feature(env, AVR_FEATURE_MUL); +} + +/* + * Setting features of AVR core type avr6 + * -------------------------------------- + * + * This type of AVR core is present in the following AVR MCUs: + * + * atmega2560, atmega2561, atmega256rfr2, atmega2564rfr2 + */ +static void avr_avr6_initfn(Object *obj) +{ + AVRCPU *cpu = AVR_CPU(obj); + CPUAVRState *env = &cpu->env; + + set_avr_feature(env, AVR_FEATURE_LPM); + set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); + set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); + set_avr_feature(env, AVR_FEATURE_SRAM); + set_avr_feature(env, AVR_FEATURE_BREAK); + + set_avr_feature(env, AVR_FEATURE_3_BYTE_PC); + set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); + set_avr_feature(env, AVR_FEATURE_RAMPZ); + set_avr_feature(env, AVR_FEATURE_EIJMP_EICALL); + set_avr_feature(env, AVR_FEATURE_ELPMX); + set_avr_feature(env, AVR_FEATURE_ELPM); + set_avr_feature(env, AVR_FEATURE_JMP_CALL); + set_avr_feature(env, AVR_FEATURE_LPMX); + set_avr_feature(env, AVR_FEATURE_MOVW); + set_avr_feature(env, AVR_FEATURE_MUL); +} + +typedef struct AVRCPUInfo { + const char *name; + void (*initfn)(Object *obj); +} AVRCPUInfo; + + +static void avr_cpu_list_entry(gpointer data, gpointer user_data) +{ + const char *typename = object_class_get_name(OBJECT_CLASS(data)); + + qemu_printf("%s\n", typename); +} + +void avr_cpu_list(void) +{ + GSList *list; + list = object_class_get_list_sorted(TYPE_AVR_CPU, false); + g_slist_foreach(list, avr_cpu_list_entry, NULL); + g_slist_free(list); +} + +#define DEFINE_AVR_CPU_TYPE(model, initfn) \ + { \ + .parent = TYPE_AVR_CPU, \ + .instance_init = initfn, \ + .name = AVR_CPU_TYPE_NAME(model), \ + } + +static const TypeInfo avr_cpu_type_info[] = { + { + .name = TYPE_AVR_CPU, + .parent = TYPE_CPU, + .instance_size = sizeof(AVRCPU), + .instance_init = avr_cpu_initfn, + .class_size = sizeof(AVRCPUClass), + .class_init = avr_cpu_class_init, + .abstract = true, + }, + DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn), + DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn), + DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn), +}; + +DEFINE_TYPES(avr_cpu_type_info) diff --git a/target/avr/cpu.h b/target/avr/cpu.h new file mode 100644 index 0000000000..d148e8c75a --- /dev/null +++ b/target/avr/cpu.h @@ -0,0 +1,256 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#ifndef QEMU_AVR_CPU_H +#define QEMU_AVR_CPU_H + +#include "cpu-qom.h" +#include "exec/cpu-defs.h" + +#ifdef CONFIG_USER_ONLY +#error "AVR 8-bit does not support user mode" +#endif + +#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU +#define AVR_CPU_TYPE_NAME(name) (name AVR_CPU_TYPE_SUFFIX) +#define CPU_RESOLVING_TYPE TYPE_AVR_CPU + +#define TCG_GUEST_DEFAULT_MO 0 + +/* + * AVR has two memory spaces, data & code. + * e.g. both have 0 address + * ST/LD instructions access data space + * LPM/SPM and instruction fetching access code memory space + */ +#define MMU_CODE_IDX 0 +#define MMU_DATA_IDX 1 + +#define EXCP_RESET 1 +#define EXCP_INT(n) (EXCP_RESET + (n) + 1) + +/* Number of CPU registers */ +#define NUMBER_OF_CPU_REGISTERS 32 +/* Number of IO registers accessible by ld/st/in/out */ +#define NUMBER_OF_IO_REGISTERS 64 + +/* + * Offsets of AVR memory regions in host memory space. + * + * This is needed because the AVR has separate code and data address + * spaces that both have start from zero but have to go somewhere in + * host memory. + * + * It's also useful to know where some things are, like the IO registers. + */ +/* Flash program memory */ +#define OFFSET_CODE 0x00000000 +/* CPU registers, IO registers, and SRAM */ +#define OFFSET_DATA 0x00800000 +/* CPU registers specifically, these are mapped at the start of data */ +#define OFFSET_CPU_REGISTERS OFFSET_DATA +/* + * IO registers, including status register, stack pointer, and memory + * mapped peripherals, mapped just after CPU registers + */ +#define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS) + +typedef enum AVRFeature { + AVR_FEATURE_SRAM, + + AVR_FEATURE_1_BYTE_PC, + AVR_FEATURE_2_BYTE_PC, + AVR_FEATURE_3_BYTE_PC, + + AVR_FEATURE_1_BYTE_SP, + AVR_FEATURE_2_BYTE_SP, + + AVR_FEATURE_BREAK, + AVR_FEATURE_DES, + AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */ + + AVR_FEATURE_EIJMP_EICALL, + AVR_FEATURE_IJMP_ICALL, + AVR_FEATURE_JMP_CALL, + + AVR_FEATURE_ADIW_SBIW, + + AVR_FEATURE_SPM, + AVR_FEATURE_SPMX, + + AVR_FEATURE_ELPMX, + AVR_FEATURE_ELPM, + AVR_FEATURE_LPMX, + AVR_FEATURE_LPM, + + AVR_FEATURE_MOVW, + AVR_FEATURE_MUL, + AVR_FEATURE_RAMPD, + AVR_FEATURE_RAMPX, + AVR_FEATURE_RAMPY, + AVR_FEATURE_RAMPZ, +} AVRFeature; + +typedef struct CPUAVRState CPUAVRState; + +struct CPUAVRState { + uint32_t pc_w; /* 0x003fffff up to 22 bits */ + + uint32_t sregC; /* 0x00000001 1 bit */ + uint32_t sregZ; /* 0x00000001 1 bit */ + uint32_t sregN; /* 0x00000001 1 bit */ + uint32_t sregV; /* 0x00000001 1 bit */ + uint32_t sregS; /* 0x00000001 1 bit */ + uint32_t sregH; /* 0x00000001 1 bit */ + uint32_t sregT; /* 0x00000001 1 bit */ + uint32_t sregI; /* 0x00000001 1 bit */ + + uint32_t rampD; /* 0x00ff0000 8 bits */ + uint32_t rampX; /* 0x00ff0000 8 bits */ + uint32_t rampY; /* 0x00ff0000 8 bits */ + uint32_t rampZ; /* 0x00ff0000 8 bits */ + uint32_t eind; /* 0x00ff0000 8 bits */ + + uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */ + uint32_t sp; /* 16 bits */ + + uint32_t skip; /* if set skip instruction */ + + uint64_t intsrc; /* interrupt sources */ + bool fullacc; /* CPU/MEM if true MEM only otherwise */ + + uint64_t features; +}; + +/** + * AVRCPU: + * @env: #CPUAVRState + * + * A AVR CPU. + */ +typedef struct AVRCPU { + /*< private >*/ + CPUState parent_obj; + /*< public >*/ + + CPUNegativeOffsetState neg; + CPUAVRState env; +} AVRCPU; + +extern const struct VMStateDescription vms_avr_cpu; + +void avr_cpu_do_interrupt(CPUState *cpu); +bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req); +hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); +int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); +int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); +int avr_print_insn(bfd_vma addr, disassemble_info *info); + +static inline int avr_feature(CPUAVRState *env, AVRFeature feature) +{ + return (env->features & (1U << feature)) != 0; +} + +static inline void set_avr_feature(CPUAVRState *env, int feature) +{ + env->features |= (1U << feature); +} + +#define cpu_list avr_cpu_list +#define cpu_signal_handler cpu_avr_signal_handler +#define cpu_mmu_index avr_cpu_mmu_index + +static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch) +{ + return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX; +} + +void avr_cpu_tcg_init(void); + +void avr_cpu_list(void); +int cpu_avr_exec(CPUState *cpu); +int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc); +int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf, + int len, bool is_write); + +enum { + TB_FLAGS_FULL_ACCESS = 1, + TB_FLAGS_SKIP = 2, +}; + +static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc, + target_ulong *cs_base, uint32_t *pflags) +{ + uint32_t flags = 0; + + *pc = env->pc_w * 2; + *cs_base = 0; + + if (env->fullacc) { + flags |= TB_FLAGS_FULL_ACCESS; + } + if (env->skip) { + flags |= TB_FLAGS_SKIP; + } + + *pflags = flags; +} + +static inline int cpu_interrupts_enabled(CPUAVRState *env) +{ + return env->sregI != 0; +} + +static inline uint8_t cpu_get_sreg(CPUAVRState *env) +{ + uint8_t sreg; + sreg = (env->sregC) << 0 + | (env->sregZ) << 1 + | (env->sregN) << 2 + | (env->sregV) << 3 + | (env->sregS) << 4 + | (env->sregH) << 5 + | (env->sregT) << 6 + | (env->sregI) << 7; + return sreg; +} + +static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg) +{ + env->sregC = (sreg >> 0) & 0x01; + env->sregZ = (sreg >> 1) & 0x01; + env->sregN = (sreg >> 2) & 0x01; + env->sregV = (sreg >> 3) & 0x01; + env->sregS = (sreg >> 4) & 0x01; + env->sregH = (sreg >> 5) & 0x01; + env->sregT = (sreg >> 6) & 0x01; + env->sregI = (sreg >> 7) & 0x01; +} + +bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, + MMUAccessType access_type, int mmu_idx, + bool probe, uintptr_t retaddr); + +typedef CPUAVRState CPUArchState; +typedef AVRCPU ArchCPU; + +#include "exec/cpu-all.h" + +#endif /* !defined (QEMU_AVR_CPU_H) */ diff --git a/target/avr/disas.c b/target/avr/disas.c new file mode 100644 index 0000000000..8e1bac4d76 --- /dev/null +++ b/target/avr/disas.c @@ -0,0 +1,245 @@ +/* + * AVR disassembler + * + * Copyright (c) 2019-2020 Richard Henderson <rth@twiddle.net> + * Copyright (c) 2019-2020 Michael Rolnik <mrolnik@gmail.com> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" + +typedef struct { + disassemble_info *info; + uint16_t next_word; + bool next_word_used; +} DisasContext; + +static int to_regs_16_31_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 16); +} + +static int to_regs_16_23_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 8); +} + +static int to_regs_24_30_by_two(DisasContext *ctx, int indx) +{ + return 24 + (indx % 4) * 2; +} + +static int to_regs_00_30_by_two(DisasContext *ctx, int indx) +{ + return (indx % 16) * 2; +} + +static uint16_t next_word(DisasContext *ctx) +{ + ctx->next_word_used = true; + return ctx->next_word; +} + +static int append_16(DisasContext *ctx, int x) +{ + return x << 16 | next_word(ctx); +} + +/* Include the auto-generated decoder. */ +static bool decode_insn(DisasContext *ctx, uint16_t insn); +#include "decode_insn.inc.c" + +#define output(mnemonic, format, ...) \ + (pctx->info->fprintf_func(pctx->info->stream, "%-9s " format, \ + mnemonic, ##__VA_ARGS__)) + +int avr_print_insn(bfd_vma addr, disassemble_info *info) +{ + DisasContext ctx; + DisasContext *pctx = &ctx; + bfd_byte buffer[4]; + uint16_t insn; + int status; + + ctx.info = info; + + status = info->read_memory_func(addr, buffer, 4, info); + if (status != 0) { + info->memory_error_func(status, addr, info); + return -1; + } + insn = bfd_getl16(buffer); + ctx.next_word = bfd_getl16(buffer + 2); + ctx.next_word_used = false; + + if (!decode_insn(&ctx, insn)) { + output(".db", "0x%02x, 0x%02x", buffer[0], buffer[1]); + } + + return ctx.next_word_used ? 4 : 2; +} + + +#define INSN(opcode, format, ...) \ +static bool trans_##opcode(DisasContext *pctx, arg_##opcode * a) \ +{ \ + output(#opcode, format, ##__VA_ARGS__); \ + return true; \ +} + +#define INSN_MNEMONIC(opcode, mnemonic, format, ...) \ +static bool trans_##opcode(DisasContext *pctx, arg_##opcode * a) \ +{ \ + output(mnemonic, format, ##__VA_ARGS__); \ + return true; \ +} + +/* + * C Z N V S H T I + * 0 1 2 3 4 5 6 7 + */ +static const char brbc[][5] = { + "BRCC", "BRNE", "BRPL", "BRVC", "BRGE", "BRHC", "BRTC", "BRID" +}; + +static const char brbs[][5] = { + "BRCS", "BREQ", "BRMI", "BRVS", "BRLT", "BRHS", "BRTS", "BRIE" +}; + +static const char bset[][4] = { + "SEC", "SEZ", "SEN", "SEZ", "SES", "SEH", "SET", "SEI" +}; + +static const char bclr[][4] = { + "CLC", "CLZ", "CLN", "CLZ", "CLS", "CLH", "CLT", "CLI" +}; + +/* + * Arithmetic Instructions + */ +INSN(ADD, "r%d, r%d", a->rd, a->rr) +INSN(ADC, "r%d, r%d", a->rd, a->rr) +INSN(ADIW, "r%d:r%d, %d", a->rd + 1, a->rd, a->imm) +INSN(SUB, "r%d, r%d", a->rd, a->rr) +INSN(SUBI, "r%d, %d", a->rd, a->imm) +INSN(SBC, "r%d, r%d", a->rd, a->rr) +INSN(SBCI, "r%d, %d", a->rd, a->imm) +INSN(SBIW, "r%d:r%d, %d", a->rd + 1, a->rd, a->imm) +INSN(AND, "r%d, r%d", a->rd, a->rr) +INSN(ANDI, "r%d, %d", a->rd, a->imm) +INSN(OR, "r%d, r%d", a->rd, a->rr) +INSN(ORI, "r%d, %d", a->rd, a->imm) +INSN(EOR, "r%d, r%d", a->rd, a->rr) +INSN(COM, "r%d", a->rd) +INSN(NEG, "r%d", a->rd) +INSN(INC, "r%d", a->rd) +INSN(DEC, "r%d", a->rd) +INSN(MUL, "r%d, r%d", a->rd, a->rr) +INSN(MULS, "r%d, r%d", a->rd, a->rr) +INSN(MULSU, "r%d, r%d", a->rd, a->rr) +INSN(FMUL, "r%d, r%d", a->rd, a->rr) +INSN(FMULS, "r%d, r%d", a->rd, a->rr) +INSN(FMULSU, "r%d, r%d", a->rd, a->rr) +INSN(DES, "%d", a->imm) + +/* + * Branch Instructions + */ +INSN(RJMP, ".%+d", a->imm * 2) +INSN(IJMP, "") +INSN(EIJMP, "") +INSN(JMP, "0x%x", a->imm * 2) +INSN(RCALL, ".%+d", a->imm * 2) +INSN(ICALL, "") +INSN(EICALL, "") +INSN(CALL, "0x%x", a->imm * 2) +INSN(RET, "") +INSN(RETI, "") +INSN(CPSE, "r%d, r%d", a->rd, a->rr) +INSN(CP, "r%d, r%d", a->rd, a->rr) +INSN(CPC, "r%d, r%d", a->rd, a->rr) +INSN(CPI, "r%d, %d", a->rd, a->imm) +INSN(SBRC, "r%d, %d", a->rr, a->bit) +INSN(SBRS, "r%d, %d", a->rr, a->bit) +INSN(SBIC, "$%d, %d", a->reg, a->bit) +INSN(SBIS, "$%d, %d", a->reg, a->bit) +INSN_MNEMONIC(BRBS, brbs[a->bit], ".%+d", a->imm * 2) +INSN_MNEMONIC(BRBC, brbc[a->bit], ".%+d", a->imm * 2) + +/* + * Data Transfer Instructions + */ +INSN(MOV, "r%d, r%d", a->rd, a->rr) +INSN(MOVW, "r%d:r%d, r%d:r%d", a->rd + 1, a->rd, a->rr + 1, a->rr) +INSN(LDI, "r%d, %d", a->rd, a->imm) +INSN(LDS, "r%d, %d", a->rd, a->imm) +INSN(LDX1, "r%d, X", a->rd) +INSN(LDX2, "r%d, X+", a->rd) +INSN(LDX3, "r%d, -X", a->rd) +INSN(LDY2, "r%d, Y+", a->rd) +INSN(LDY3, "r%d, -Y", a->rd) +INSN(LDZ2, "r%d, Z+", a->rd) +INSN(LDZ3, "r%d, -Z", a->rd) +INSN(LDDY, "r%d, Y+%d", a->rd, a->imm) +INSN(LDDZ, "r%d, Z+%d", a->rd, a->imm) +INSN(STS, "%d, r%d", a->imm, a->rd) +INSN(STX1, "X, r%d", a->rr) +INSN(STX2, "X+, r%d", a->rr) +INSN(STX3, "-X, r%d", a->rr) +INSN(STY2, "Y+, r%d", a->rd) +INSN(STY3, "-Y, r%d", a->rd) +INSN(STZ2, "Z+, r%d", a->rd) +INSN(STZ3, "-Z, r%d", a->rd) +INSN(STDY, "Y+%d, r%d", a->imm, a->rd) +INSN(STDZ, "Z+%d, r%d", a->imm, a->rd) +INSN(LPM1, "") +INSN(LPM2, "r%d, Z", a->rd) +INSN(LPMX, "r%d, Z+", a->rd) +INSN(ELPM1, "") +INSN(ELPM2, "r%d, Z", a->rd) +INSN(ELPMX, "r%d, Z+", a->rd) +INSN(SPM, "") +INSN(SPMX, "Z+") +INSN(IN, "r%d, $%d", a->rd, a->imm) +INSN(OUT, "$%d, r%d", a->imm, a->rd) +INSN(PUSH, "r%d", a->rd) +INSN(POP, "r%d", a->rd) +INSN(XCH, "Z, r%d", a->rd) +INSN(LAC, "Z, r%d", a->rd) +INSN(LAS, "Z, r%d", a->rd) +INSN(LAT, "Z, r%d", a->rd) + +/* + * Bit and Bit-test Instructions + */ +INSN(LSR, "r%d", a->rd) +INSN(ROR, "r%d", a->rd) +INSN(ASR, "r%d", a->rd) +INSN(SWAP, "r%d", a->rd) +INSN(SBI, "$%d, %d", a->reg, a->bit) +INSN(CBI, "%d, %d", a->reg, a->bit) +INSN(BST, "r%d, %d", a->rd, a->bit) +INSN(BLD, "r%d, %d", a->rd, a->bit) +INSN_MNEMONIC(BSET, bset[a->bit], "") +INSN_MNEMONIC(BCLR, bclr[a->bit], "") + +/* + * MCU Control Instructions + */ +INSN(BREAK, "") +INSN(NOP, "") +INSN(SLEEP, "") +INSN(WDR, "") diff --git a/target/avr/gdbstub.c b/target/avr/gdbstub.c new file mode 100644 index 0000000000..c28ed67efe --- /dev/null +++ b/target/avr/gdbstub.c @@ -0,0 +1,84 @@ +/* + * QEMU AVR gdbstub + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "exec/gdbstub.h" + +int avr_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + /* R */ + if (n < 32) { + return gdb_get_reg8(mem_buf, env->r[n]); + } + + /* SREG */ + if (n == 32) { + uint8_t sreg = cpu_get_sreg(env); + + return gdb_get_reg8(mem_buf, sreg); + } + + /* SP */ + if (n == 33) { + return gdb_get_reg16(mem_buf, env->sp & 0x0000ffff); + } + + /* PC */ + if (n == 34) { + return gdb_get_reg32(mem_buf, env->pc_w * 2); + } + + return 0; +} + +int avr_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + /* R */ + if (n < 32) { + env->r[n] = *mem_buf; + return 1; + } + + /* SREG */ + if (n == 32) { + cpu_set_sreg(env, *mem_buf); + return 1; + } + + /* SP */ + if (n == 33) { + env->sp = lduw_p(mem_buf); + return 2; + } + + /* PC */ + if (n == 34) { + env->pc_w = ldl_p(mem_buf) / 2; + return 4; + } + + return 0; +} diff --git a/target/avr/helper.c b/target/avr/helper.c new file mode 100644 index 0000000000..d96d14372b --- /dev/null +++ b/target/avr/helper.c @@ -0,0 +1,348 @@ +/* + * QEMU AVR CPU helpers + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/address-spaces.h" +#include "exec/helper-proto.h" + +bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) +{ + bool ret = false; + CPUClass *cc = CPU_GET_CLASS(cs); + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + if (interrupt_request & CPU_INTERRUPT_RESET) { + if (cpu_interrupts_enabled(env)) { + cs->exception_index = EXCP_RESET; + cc->do_interrupt(cs); + + cs->interrupt_request &= ~CPU_INTERRUPT_RESET; + + ret = true; + } + } + if (interrupt_request & CPU_INTERRUPT_HARD) { + if (cpu_interrupts_enabled(env) && env->intsrc != 0) { + int index = ctz32(env->intsrc); + cs->exception_index = EXCP_INT(index); + cc->do_interrupt(cs); + + env->intsrc &= env->intsrc - 1; /* clear the interrupt */ + cs->interrupt_request &= ~CPU_INTERRUPT_HARD; + + ret = true; + } + } + return ret; +} + +void avr_cpu_do_interrupt(CPUState *cs) +{ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + + uint32_t ret = env->pc_w; + int vector = 0; + int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; + int base = 0; + + if (cs->exception_index == EXCP_RESET) { + vector = 0; + } else if (env->intsrc != 0) { + vector = ctz32(env->intsrc) + 1; + } + + if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { + cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); + cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); + cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); + } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { + cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); + cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); + } else { + cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); + } + + env->pc_w = base + vector * size; + env->sregI = 0; /* clear Global Interrupt Flag */ + + cs->exception_index = -1; +} + +int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf, + int len, bool is_write) +{ + return cpu_memory_rw_debug(cs, addr, buf, len, is_write); +} + +hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) +{ + return addr; /* I assume 1:1 address correspondance */ +} + +bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, + MMUAccessType access_type, int mmu_idx, + bool probe, uintptr_t retaddr) +{ + int prot = 0; + MemTxAttrs attrs = {}; + uint32_t paddr; + + address &= TARGET_PAGE_MASK; + + if (mmu_idx == MMU_CODE_IDX) { + /* access to code in flash */ + paddr = OFFSET_CODE + address; + prot = PAGE_READ | PAGE_EXEC; + if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) { + error_report("execution left flash memory"); + abort(); + } + } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { + /* + * access to CPU registers, exit and rebuilt this TB to use full access + * incase it touches specially handled registers like SREG or SP + */ + AVRCPU *cpu = AVR_CPU(cs); + CPUAVRState *env = &cpu->env; + env->fullacc = 1; + cpu_loop_exit_restore(cs, retaddr); + } else { + /* access to memory. nothing special */ + paddr = OFFSET_DATA + address; + prot = PAGE_READ | PAGE_WRITE; + } + + tlb_set_page_with_attrs(cs, address, paddr, attrs, prot, + mmu_idx, TARGET_PAGE_SIZE); + + return true; +} + +/* + * helpers + */ + +void helper_sleep(CPUAVRState *env) +{ + CPUState *cs = env_cpu(env); + + cs->exception_index = EXCP_HLT; + cpu_loop_exit(cs); +} + +void helper_unsupported(CPUAVRState *env) +{ + CPUState *cs = env_cpu(env); + + /* + * I count not find what happens on the real platform, so + * it's EXCP_DEBUG for meanwhile + */ + cs->exception_index = EXCP_DEBUG; + if (qemu_loglevel_mask(LOG_UNIMP)) { + qemu_log("UNSUPPORTED\n"); + cpu_dump_state(cs, stderr, 0); + } + cpu_loop_exit(cs); +} + +void helper_debug(CPUAVRState *env) +{ + CPUState *cs = env_cpu(env); + + cs->exception_index = EXCP_DEBUG; + cpu_loop_exit(cs); +} + +void helper_break(CPUAVRState *env) +{ + CPUState *cs = env_cpu(env); + + cs->exception_index = EXCP_DEBUG; + cpu_loop_exit(cs); +} + +void helper_wdr(CPUAVRState *env) +{ + CPUState *cs = env_cpu(env); + + /* WD is not implemented yet, placeholder */ + cs->exception_index = EXCP_DEBUG; + cpu_loop_exit(cs); +} + +/* + * This function implements IN instruction + * + * It does the following + * a. if an IO register belongs to CPU, its value is read and returned + * b. otherwise io address is translated to mem address and physical memory + * is read. + * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation + * + */ +target_ulong helper_inb(CPUAVRState *env, uint32_t port) +{ + target_ulong data = 0; + + switch (port) { + case 0x38: /* RAMPD */ + data = 0xff & (env->rampD >> 16); + break; + case 0x39: /* RAMPX */ + data = 0xff & (env->rampX >> 16); + break; + case 0x3a: /* RAMPY */ + data = 0xff & (env->rampY >> 16); + break; + case 0x3b: /* RAMPZ */ + data = 0xff & (env->rampZ >> 16); + break; + case 0x3c: /* EIND */ + data = 0xff & (env->eind >> 16); + break; + case 0x3d: /* SPL */ + data = env->sp & 0x00ff; + break; + case 0x3e: /* SPH */ + data = env->sp >> 8; + break; + case 0x3f: /* SREG */ + data = cpu_get_sreg(env); + break; + default: + /* not a special register, pass to normal memory access */ + data = address_space_ldub(&address_space_memory, + OFFSET_IO_REGISTERS + port, + MEMTXATTRS_UNSPECIFIED, NULL); + } + + return data; +} + +/* + * This function implements OUT instruction + * + * It does the following + * a. if an IO register belongs to CPU, its value is written into the register + * b. otherwise io address is translated to mem address and physical memory + * is written. + * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation + * + */ +void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) +{ + data &= 0x000000ff; + + switch (port) { + case 0x38: /* RAMPD */ + if (avr_feature(env, AVR_FEATURE_RAMPD)) { + env->rampD = (data & 0xff) << 16; + } + break; + case 0x39: /* RAMPX */ + if (avr_feature(env, AVR_FEATURE_RAMPX)) { + env->rampX = (data & 0xff) << 16; + } + break; + case 0x3a: /* RAMPY */ + if (avr_feature(env, AVR_FEATURE_RAMPY)) { + env->rampY = (data & 0xff) << 16; + } + break; + case 0x3b: /* RAMPZ */ + if (avr_feature(env, AVR_FEATURE_RAMPZ)) { + env->rampZ = (data & 0xff) << 16; + } + break; + case 0x3c: /* EIDN */ + env->eind = (data & 0xff) << 16; + break; + case 0x3d: /* SPL */ + env->sp = (env->sp & 0xff00) | (data); + break; + case 0x3e: /* SPH */ + if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { + env->sp = (env->sp & 0x00ff) | (data << 8); + } + break; + case 0x3f: /* SREG */ + cpu_set_sreg(env, data); + break; + default: + /* not a special register, pass to normal memory access */ + address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, + data, MEMTXATTRS_UNSPECIFIED, NULL); + } +} + +/* + * this function implements LD instruction when there is a posibility to read + * from a CPU register + */ +target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) +{ + uint8_t data; + + env->fullacc = false; + + if (addr < NUMBER_OF_CPU_REGISTERS) { + /* CPU registers */ + data = env->r[addr]; + } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { + /* IO registers */ + data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); + } else { + /* memory */ + data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, + MEMTXATTRS_UNSPECIFIED, NULL); + } + return data; +} + +/* + * this function implements ST instruction when there is a posibility to write + * into a CPU register + */ +void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) +{ + env->fullacc = false; + + /* Following logic assumes this: */ + assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); + assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + + NUMBER_OF_CPU_REGISTERS); + + if (addr < NUMBER_OF_CPU_REGISTERS) { + /* CPU registers */ + env->r[addr] = data; + } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { + /* IO registers */ + helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); + } else { + /* memory */ + address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, + MEMTXATTRS_UNSPECIFIED, NULL); + } +} diff --git a/target/avr/helper.h b/target/avr/helper.h new file mode 100644 index 0000000000..8e1ae7fda0 --- /dev/null +++ b/target/avr/helper.h @@ -0,0 +1,29 @@ +/* + * QEMU AVR CPU helpers + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +DEF_HELPER_1(wdr, void, env) +DEF_HELPER_1(debug, void, env) +DEF_HELPER_1(break, void, env) +DEF_HELPER_1(sleep, void, env) +DEF_HELPER_1(unsupported, void, env) +DEF_HELPER_3(outb, void, env, i32, i32) +DEF_HELPER_2(inb, tl, env, i32) +DEF_HELPER_3(fullwr, void, env, i32, i32) +DEF_HELPER_2(fullrd, tl, env, i32) diff --git a/target/avr/insn.decode b/target/avr/insn.decode new file mode 100644 index 0000000000..482c23ad0c --- /dev/null +++ b/target/avr/insn.decode @@ -0,0 +1,187 @@ +# +# AVR instruction decode definitions. +# +# Copyright (c) 2019-2020 Michael Rolnik <mrolnik@gmail.com> +# +# This library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2.1 of the License, or (at your option) any later version. +# +# This library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this library; if not, see <http://www.gnu.org/licenses/>. +# + +# +# regs_16_31_by_one = [16 .. 31] +# regs_16_23_by_one = [16 .. 23] +# regs_24_30_by_two = [24, 26, 28, 30] +# regs_00_30_by_two = [0, 2, 4, 6, 8, .. 30] + +%rd 4:5 +%rr 9:1 0:4 + +%rd_a 4:4 !function=to_regs_16_31_by_one +%rd_b 4:3 !function=to_regs_16_23_by_one +%rd_c 4:2 !function=to_regs_24_30_by_two +%rr_a 0:4 !function=to_regs_16_31_by_one +%rr_b 0:3 !function=to_regs_16_23_by_one + +%imm6 6:2 0:4 +%imm8 8:4 0:4 + +%io_imm 9:2 0:4 +%ldst_d_imm 13:1 10:2 0:3 + + +&rd_rr rd rr +&rd_imm rd imm + +@op_rd_rr .... .. . ..... .... &rd_rr rd=%rd rr=%rr +@op_rd_imm6 .... .... .. .. .... &rd_imm rd=%rd_c imm=%imm6 +@op_rd_imm8 .... .... .... .... &rd_imm rd=%rd_a imm=%imm8 +@fmul .... .... . ... . ... &rd_rr rd=%rd_b rr=%rr_b + +# +# Arithmetic Instructions +# +ADD 0000 11 . ..... .... @op_rd_rr +ADC 0001 11 . ..... .... @op_rd_rr +ADIW 1001 0110 .. .. .... @op_rd_imm6 +SUB 0001 10 . ..... .... @op_rd_rr +SUBI 0101 .... .... .... @op_rd_imm8 +SBC 0000 10 . ..... .... @op_rd_rr +SBCI 0100 .... .... .... @op_rd_imm8 +SBIW 1001 0111 .. .. .... @op_rd_imm6 +AND 0010 00 . ..... .... @op_rd_rr +ANDI 0111 .... .... .... @op_rd_imm8 +OR 0010 10 . ..... .... @op_rd_rr +ORI 0110 .... .... .... @op_rd_imm8 +EOR 0010 01 . ..... .... @op_rd_rr +COM 1001 010 rd:5 0000 +NEG 1001 010 rd:5 0001 +INC 1001 010 rd:5 0011 +DEC 1001 010 rd:5 1010 +MUL 1001 11 . ..... .... @op_rd_rr +MULS 0000 0010 .... .... &rd_rr rd=%rd_a rr=%rr_a +MULSU 0000 0011 0 ... 0 ... @fmul +FMUL 0000 0011 0 ... 1 ... @fmul +FMULS 0000 0011 1 ... 0 ... @fmul +FMULSU 0000 0011 1 ... 1 ... @fmul +DES 1001 0100 imm:4 1011 + +# +# Branch Instructions +# + +# The 22-bit immediate is partially in the opcode word, +# and partially in the next. Use append_16 to build the +# complete 22-bit value. +%imm_call 4:5 0:1 !function=append_16 + +@op_bit .... .... . bit:3 .... +@op_bit_imm .... .. imm:s7 bit:3 + +RJMP 1100 imm:s12 +IJMP 1001 0100 0000 1001 +EIJMP 1001 0100 0001 1001 +JMP 1001 010 ..... 110 . imm=%imm_call +RCALL 1101 imm:s12 +ICALL 1001 0101 0000 1001 +EICALL 1001 0101 0001 1001 +CALL 1001 010 ..... 111 . imm=%imm_call +RET 1001 0101 0000 1000 +RETI 1001 0101 0001 1000 +CPSE 0001 00 . ..... .... @op_rd_rr +CP 0001 01 . ..... .... @op_rd_rr +CPC 0000 01 . ..... .... @op_rd_rr +CPI 0011 .... .... .... @op_rd_imm8 +SBRC 1111 110 rr:5 0 bit:3 +SBRS 1111 111 rr:5 0 bit:3 +SBIC 1001 1001 reg:5 bit:3 +SBIS 1001 1011 reg:5 bit:3 +BRBS 1111 00 ....... ... @op_bit_imm +BRBC 1111 01 ....... ... @op_bit_imm + +# +# Data Transfer Instructions +# + +%rd_d 4:4 !function=to_regs_00_30_by_two +%rr_d 0:4 !function=to_regs_00_30_by_two + +@io_rd_imm .... . .. ..... .... &rd_imm rd=%rd imm=%io_imm +@ldst_d .. . . .. . rd:5 . ... &rd_imm imm=%ldst_d_imm + +# The 16-bit immediate is completely in the next word. +# Fields cannot be defined with no bits, so we cannot play +# the same trick and append to a zero-bit value. +# Defer reading the immediate until trans_{LDS,STS}. +@ldst_s .... ... rd:5 .... imm=0 + +MOV 0010 11 . ..... .... @op_rd_rr +MOVW 0000 0001 .... .... &rd_rr rd=%rd_d rr=%rr_d +LDI 1110 .... .... .... @op_rd_imm8 +LDS 1001 000 ..... 0000 @ldst_s +LDX1 1001 000 rd:5 1100 +LDX2 1001 000 rd:5 1101 +LDX3 1001 000 rd:5 1110 +LDY2 1001 000 rd:5 1001 +LDY3 1001 000 rd:5 1010 +LDZ2 1001 000 rd:5 0001 +LDZ3 1001 000 rd:5 0010 +LDDY 10 . 0 .. 0 ..... 1 ... @ldst_d +LDDZ 10 . 0 .. 0 ..... 0 ... @ldst_d +STS 1001 001 ..... 0000 @ldst_s +STX1 1001 001 rr:5 1100 +STX2 1001 001 rr:5 1101 +STX3 1001 001 rr:5 1110 +STY2 1001 001 rd:5 1001 +STY3 1001 001 rd:5 1010 +STZ2 1001 001 rd:5 0001 +STZ3 1001 001 rd:5 0010 +STDY 10 . 0 .. 1 ..... 1 ... @ldst_d +STDZ 10 . 0 .. 1 ..... 0 ... @ldst_d +LPM1 1001 0101 1100 1000 +LPM2 1001 000 rd:5 0100 +LPMX 1001 000 rd:5 0101 +ELPM1 1001 0101 1101 1000 +ELPM2 1001 000 rd:5 0110 +ELPMX 1001 000 rd:5 0111 +SPM 1001 0101 1110 1000 +SPMX 1001 0101 1111 1000 +IN 1011 0 .. ..... .... @io_rd_imm +OUT 1011 1 .. ..... .... @io_rd_imm +PUSH 1001 001 rd:5 1111 +POP 1001 000 rd:5 1111 +XCH 1001 001 rd:5 0100 +LAC 1001 001 rd:5 0110 +LAS 1001 001 rd:5 0101 +LAT 1001 001 rd:5 0111 + +# +# Bit and Bit-test Instructions +# +LSR 1001 010 rd:5 0110 +ROR 1001 010 rd:5 0111 +ASR 1001 010 rd:5 0101 +SWAP 1001 010 rd:5 0010 +SBI 1001 1010 reg:5 bit:3 +CBI 1001 1000 reg:5 bit:3 +BST 1111 101 rd:5 0 bit:3 +BLD 1111 100 rd:5 0 bit:3 +BSET 1001 0100 0 bit:3 1000 +BCLR 1001 0100 1 bit:3 1000 + +# +# MCU Control Instructions +# +BREAK 1001 0101 1001 1000 +NOP 0000 0000 0000 0000 +SLEEP 1001 0101 1000 1000 +WDR 1001 0101 1010 1000 diff --git a/target/avr/machine.c b/target/avr/machine.c new file mode 100644 index 0000000000..e315442787 --- /dev/null +++ b/target/avr/machine.c @@ -0,0 +1,119 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2016-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "migration/cpu.h" + +static int get_sreg(QEMUFile *f, void *opaque, size_t size, + const VMStateField *field) +{ + CPUAVRState *env = opaque; + uint8_t sreg; + + sreg = qemu_get_byte(f); + cpu_set_sreg(env, sreg); + return 0; +} + +static int put_sreg(QEMUFile *f, void *opaque, size_t size, + const VMStateField *field, QJSON *vmdesc) +{ + CPUAVRState *env = opaque; + uint8_t sreg = cpu_get_sreg(env); + + qemu_put_byte(f, sreg); + return 0; +} + +static const VMStateInfo vms_sreg = { + .name = "sreg", + .get = get_sreg, + .put = put_sreg, +}; + +static int get_segment(QEMUFile *f, void *opaque, size_t size, + const VMStateField *field) +{ + uint32_t *ramp = opaque; + uint8_t temp; + + temp = qemu_get_byte(f); + *ramp = ((uint32_t)temp) << 16; + return 0; +} + +static int put_segment(QEMUFile *f, void *opaque, size_t size, + const VMStateField *field, QJSON *vmdesc) +{ + uint32_t *ramp = opaque; + uint8_t temp = *ramp >> 16; + + qemu_put_byte(f, temp); + return 0; +} + +static const VMStateInfo vms_rampD = { + .name = "rampD", + .get = get_segment, + .put = put_segment, +}; +static const VMStateInfo vms_rampX = { + .name = "rampX", + .get = get_segment, + .put = put_segment, +}; +static const VMStateInfo vms_rampY = { + .name = "rampY", + .get = get_segment, + .put = put_segment, +}; +static const VMStateInfo vms_rampZ = { + .name = "rampZ", + .get = get_segment, + .put = put_segment, +}; +static const VMStateInfo vms_eind = { + .name = "eind", + .get = get_segment, + .put = put_segment, +}; + +const VMStateDescription vms_avr_cpu = { + .name = "cpu", + .version_id = 0, + .minimum_version_id = 0, + .fields = (VMStateField[]) { + VMSTATE_UINT32(env.pc_w, AVRCPU), + VMSTATE_UINT32(env.sp, AVRCPU), + VMSTATE_UINT32(env.skip, AVRCPU), + + VMSTATE_UINT32_ARRAY(env.r, AVRCPU, NUMBER_OF_CPU_REGISTERS), + + VMSTATE_SINGLE(env, AVRCPU, 0, vms_sreg, CPUAVRState), + VMSTATE_SINGLE(env.rampD, AVRCPU, 0, vms_rampD, uint32_t), + VMSTATE_SINGLE(env.rampX, AVRCPU, 0, vms_rampX, uint32_t), + VMSTATE_SINGLE(env.rampY, AVRCPU, 0, vms_rampY, uint32_t), + VMSTATE_SINGLE(env.rampZ, AVRCPU, 0, vms_rampZ, uint32_t), + VMSTATE_SINGLE(env.eind, AVRCPU, 0, vms_eind, uint32_t), + + VMSTATE_END_OF_LIST() + } +}; diff --git a/target/avr/translate.c b/target/avr/translate.c new file mode 100644 index 0000000000..648dcd5c3e --- /dev/null +++ b/target/avr/translate.c @@ -0,0 +1,3061 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2019-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "qemu/qemu-print.h" +#include "tcg/tcg.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "tcg/tcg-op.h" +#include "exec/cpu_ldst.h" +#include "exec/helper-proto.h" +#include "exec/helper-gen.h" +#include "exec/log.h" +#include "exec/translator.h" +#include "exec/gen-icount.h" + +/* + * Define if you want a BREAK instruction translated to a breakpoint + * Active debugging connection is assumed + * This is for + * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests + * tests + */ +#undef BREAKPOINT_ON_BREAK + +static TCGv cpu_pc; + +static TCGv cpu_Cf; +static TCGv cpu_Zf; +static TCGv cpu_Nf; +static TCGv cpu_Vf; +static TCGv cpu_Sf; +static TCGv cpu_Hf; +static TCGv cpu_Tf; +static TCGv cpu_If; + +static TCGv cpu_rampD; +static TCGv cpu_rampX; +static TCGv cpu_rampY; +static TCGv cpu_rampZ; + +static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; +static TCGv cpu_eind; +static TCGv cpu_sp; + +static TCGv cpu_skip; + +static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", +}; +#define REG(x) (cpu_r[x]) + +enum { + DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu main loop. */ + DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition exit. */ + DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition exit. */ +}; + +typedef struct DisasContext DisasContext; + +/* This is the state at translation time. */ +struct DisasContext { + TranslationBlock *tb; + + CPUAVRState *env; + CPUState *cs; + + target_long npc; + uint32_t opcode; + + /* Routine used to access memory */ + int memidx; + int bstate; + int singlestep; + + /* + * some AVR instructions can make the following instruction to be skipped + * Let's name those instructions + * A - instruction that can skip the next one + * B - instruction that can be skipped. this depends on execution of A + * there are two scenarios + * 1. A and B belong to the same translation block + * 2. A is the last instruction in the translation block and B is the last + * + * following variables are used to simplify the skipping logic, they are + * used in the following manner (sketch) + * + * TCGLabel *skip_label = NULL; + * if (ctx.skip_cond != TCG_COND_NEVER) { + * skip_label = gen_new_label(); + * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); + * } + * + * if (free_skip_var0) { + * tcg_temp_free(skip_var0); + * free_skip_var0 = false; + * } + * + * translate(&ctx); + * + * if (skip_label) { + * gen_set_label(skip_label); + * } + */ + TCGv skip_var0; + TCGv skip_var1; + TCGCond skip_cond; + bool free_skip_var0; +}; + +void avr_cpu_tcg_init(void) +{ + int i; + +#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) + cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc"); + cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf"); + cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf"); + cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf"); + cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf"); + cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf"); + cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf"); + cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf"); + cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If"); + cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD"); + cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX"); + cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY"); + cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ"); + cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind"); + cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp"); + cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip"); + + for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { + cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), + reg_names[i]); + } +#undef AVR_REG_OFFS +} + +static int to_regs_16_31_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 16); +} + +static int to_regs_16_23_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 8); +} + +static int to_regs_24_30_by_two(DisasContext *ctx, int indx) +{ + return 24 + (indx % 4) * 2; +} + +static int to_regs_00_30_by_two(DisasContext *ctx, int indx) +{ + return (indx % 16) * 2; +} + +static uint16_t next_word(DisasContext *ctx) +{ + return cpu_lduw_code(ctx->env, ctx->npc++ * 2); +} + +static int append_16(DisasContext *ctx, int x) +{ + return x << 16 | next_word(ctx); +} + +static bool avr_have_feature(DisasContext *ctx, int feature) +{ + if (!avr_feature(ctx->env, feature)) { + gen_helper_unsupported(cpu_env); + ctx->bstate = DISAS_NORETURN; + return false; + } + return true; +} + +static bool decode_insn(DisasContext *ctx, uint16_t insn); +#include "decode_insn.inc.c" + +/* + * Arithmetic Instructions + */ + +/* + * Utility functions for updating status registers: + * + * - gen_add_CHf() + * - gen_add_Vf() + * - gen_sub_CHf() + * - gen_sub_Vf() + * - gen_NSf() + * - gen_ZNSf() + * + */ + +static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + TCGv t3 = tcg_temp_new_i32(); + + tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ + tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ + tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ + tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ + tcg_gen_or_tl(t1, t1, t3); + + tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ + tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ + tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); + + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + + /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ + /* = (Rd ^ R) & ~(Rd ^ Rr) */ + tcg_gen_xor_tl(t1, Rd, R); + tcg_gen_xor_tl(t2, Rd, Rr); + tcg_gen_andc_tl(t1, t1, t2); + + tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ + + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + TCGv t3 = tcg_temp_new_i32(); + + tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ + tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ + tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ + tcg_gen_and_tl(t3, t3, R); + tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ + + tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ + tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ + tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); + + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + + /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ + /* = (Rd ^ R) & (Rd ^ R) */ + tcg_gen_xor_tl(t1, Rd, R); + tcg_gen_xor_tl(t2, Rd, Rr); + tcg_gen_and_tl(t1, t1, t2); + + tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ + + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_NSf(TCGv R) +{ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +static void gen_ZNSf(TCGv R) +{ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +/* + * Adds two registers without the C Flag and places the result in the + * destination register Rd. + */ +static bool trans_ADD(DisasContext *ctx, arg_ADD *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_add_CHf(R, Rd, Rr); + gen_add_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds two registers and the contents of the C Flag and places the result in + * the destination register Rd. + */ +static bool trans_ADC(DisasContext *ctx, arg_ADC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ + tcg_gen_add_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_add_CHf(R, Rd, Rr); + gen_add_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds an immediate value (0 - 63) to a register pair and places the result + * in the register pair. This instruction operates on the upper four register + * pairs, and is well suited for operations on the pointer registers. This + * instruction is not available in all devices. Refer to the device specific + * instruction set summary. + */ +static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + int Imm = (a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv Rd = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ + tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ + tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); + tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ + tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ + + /* update output registers */ + tcg_gen_andi_tl(RdL, R, 0xff); + tcg_gen_shri_tl(RdH, R, 8); + + tcg_temp_free_i32(Rd); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Subtracts two registers and places the result in the destination + * register Rd. + */ +static bool trans_SUB(DisasContext *ctx, arg_SUB *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Subtracts a register and a constant and places the result in the + * destination register Rd. This instruction is working on Register R16 to R31 + * and is very well suited for operations on the X, Y, and Z-pointers. + */ +static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = tcg_const_i32(a->imm); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * Subtracts two registers and subtracts with the C Flag and places the + * result in the destination register Rd. + */ +static bool trans_SBC(DisasContext *ctx, arg_SBC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + + return true; +} + +/* + * SBCI -- Subtract Immediate with Carry + */ +static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = tcg_const_i32(a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * Subtracts an immediate value (0-63) from a register pair and places the + * result in the register pair. This instruction operates on the upper four + * register pairs, and is well suited for operations on the Pointer Registers. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + int Imm = (a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv Rd = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ + tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, R, Rd); + tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ + tcg_gen_andc_tl(cpu_Vf, Rd, R); + tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ + + /* update output registers */ + tcg_gen_andi_tl(RdL, R, 0xff); + tcg_gen_shri_tl(RdH, R, 8); + + tcg_temp_free_i32(Rd); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical AND between the contents of register Rd and register + * Rr and places the result in the destination register Rd. + */ +static bool trans_AND(DisasContext *ctx, arg_AND *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical AND between the contents of register Rd and a constant + * and places the result in the destination register Rd. + */ +static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = (a->imm); + + tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Performs the logical OR between the contents of register Rd and register + * Rr and places the result in the destination register Rd. + */ +static bool trans_OR(DisasContext *ctx, arg_OR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_or_tl(R, Rd, Rr); + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical OR between the contents of register Rd and a + * constant and places the result in the destination register Rd. + */ +static bool trans_ORI(DisasContext *ctx, arg_ORI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = (a->imm); + + tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Performs the logical EOR between the contents of register Rd and + * register Rr and places the result in the destination register Rd. + */ +static bool trans_EOR(DisasContext *ctx, arg_EOR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + + tcg_gen_xor_tl(Rd, Rd, Rr); + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); + gen_ZNSf(Rd); + + return true; +} + +/* + * Clears the specified bits in register Rd. Performs the logical AND + * between the contents of register Rd and the complement of the constant mask + * K. The result will be placed in register Rd. + */ +static bool trans_COM(DisasContext *ctx, arg_COM *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_xori_tl(Rd, Rd, 0xff); + + /* update status register */ + tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ + tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ + gen_ZNSf(Rd); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Replaces the contents of register Rd with its two's complement; the + * value $80 is left unchanged. + */ +static bool trans_NEG(DisasContext *ctx, arg_NEG *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_const_i32(0); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, t0, Rd); + gen_sub_Vf(R, t0, Rd); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds one -1- to the contents of register Rd and places the result in the + * destination register Rd. The C Flag in SREG is not affected by the + * operation, thus allowing the INC instruction to be used on a loop counter in + * multiple-precision computations. When operating on unsigned numbers, only + * BREQ and BRNE branches can be expected to perform consistently. When + * operating on two's complement values, all signed branches are available. + */ +static bool trans_INC(DisasContext *ctx, arg_INC *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_addi_tl(Rd, Rd, 1); + tcg_gen_andi_tl(Rd, Rd, 0xff); + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Subtracts one -1- from the contents of register Rd and places the result + * in the destination register Rd. The C Flag in SREG is not affected by the + * operation, thus allowing the DEC instruction to be used on a loop counter in + * multiple-precision computations. When operating on unsigned values, only + * BREQ and BRNE branches can be expected to perform consistently. When + * operating on two's complement values, all signed branches are available. + */ +static bool trans_DEC(DisasContext *ctx, arg_DEC *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ + tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ + gen_ZNSf(Rd); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. + */ +static bool trans_MUL(DisasContext *ctx, arg_MUL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. + */ +static bool trans_MULS(DisasContext *ctx, arg_MULS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ + tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a + * signed and an unsigned number. + */ +static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit unsigned + * multiplication and shifts the result one bit left. + */ +static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication + * and shifts the result one bit left. + */ +static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ + tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication + * and shifts the result one bit left. + */ +static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * The module is an instruction set extension to the AVR CPU, performing + * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in + * the CPU register file, registers R0-R7, where LSB of data is placed in LSB + * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including + * parity bits) is placed in registers R8- R15, organized in the register file + * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES + * instruction performs one round in the DES algorithm. Sixteen rounds must be + * executed in increasing order to form the correct DES ciphertext or + * plaintext. Intermediate results are stored in the register file (R0-R15) + * after each DES instruction. The instruction's operand (K) determines which + * round is executed, and the half carry flag (H) determines whether encryption + * or decryption is performed. The DES algorithm is described in + * "Specifications for the Data Encryption Standard" (Federal Information + * Processing Standards Publication 46). Intermediate results in this + * implementation differ from the standard because the initial permutation and + * the inverse initial permutation are performed each iteration. This does not + * affect the result in the final ciphertext or plaintext, but reduces + * execution time. + */ +static bool trans_DES(DisasContext *ctx, arg_DES *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { + return true; + } + + qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); + + return true; +} + +/* + * Branch Instructions + */ +static void gen_jmp_ez(DisasContext *ctx) +{ + tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); + tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); + ctx->bstate = DISAS_LOOKUP; +} + +static void gen_jmp_z(DisasContext *ctx) +{ + tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); + ctx->bstate = DISAS_LOOKUP; +} + +static void gen_push_ret(DisasContext *ctx, int ret) +{ + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { + + TCGv t0 = tcg_const_i32((ret & 0x0000ff)); + + tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(t0); + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { + + TCGv t0 = tcg_const_i32((ret & 0x00ffff)); + + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(t0); + + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { + + TCGv lo = tcg_const_i32((ret & 0x0000ff)); + TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8); + + tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); + tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(lo); + tcg_temp_free_i32(hi); + } +} + +static void gen_pop_ret(DisasContext *ctx, TCGv ret) +{ + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { + TCGv lo = tcg_temp_new_i32(); + TCGv hi = tcg_temp_new_i32(); + + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); + + tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); + tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); + + tcg_gen_deposit_tl(ret, lo, hi, 8, 16); + + tcg_temp_free_i32(lo); + tcg_temp_free_i32(hi); + } +} + +static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) +{ + TranslationBlock *tb = ctx->tb; + + if (ctx->singlestep == 0) { + tcg_gen_goto_tb(n); + tcg_gen_movi_i32(cpu_pc, dest); + tcg_gen_exit_tb(tb, n); + } else { + tcg_gen_movi_i32(cpu_pc, dest); + gen_helper_debug(cpu_env); + tcg_gen_exit_tb(NULL, 0); + } + ctx->bstate = DISAS_NORETURN; +} + +/* + * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For + * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this + * instruction can address the entire memory from every address location. See + * also JMP. + */ +static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) +{ + int dst = ctx->npc + a->imm; + + gen_goto_tb(ctx, 0, dst); + + return true; +} + +/* + * Indirect jump to the address pointed to by the Z (16 bits) Pointer + * Register in the Register File. The Z-pointer Register is 16 bits wide and + * allows jump within the lowest 64K words (128KB) section of Program memory. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { + return true; + } + + gen_jmp_z(ctx); + + return true; +} + +/* + * Indirect jump to the address pointed to by the Z (16 bits) Pointer + * Register in the Register File and the EIND Register in the I/O space. This + * instruction allows for indirect jumps to the entire 4M (words) Program + * memory space. See also IJMP. This instruction is not available in all + * devices. Refer to the device specific instruction set summary. + */ +static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { + return true; + } + + gen_jmp_ez(ctx); + return true; +} + +/* + * Jump to an address within the entire 4M (words) Program memory. See also + * RJMP. This instruction is not available in all devices. Refer to the device + * specific instruction set summary.0 + */ +static bool trans_JMP(DisasContext *ctx, arg_JMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { + return true; + } + + gen_goto_tb(ctx, 0, a->imm); + + return true; +} + +/* + * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The + * return address (the instruction after the RCALL) is stored onto the Stack. + * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K + * words (8KB) this instruction can address the entire memory from every + * address location. The Stack Pointer uses a post-decrement scheme during + * RCALL. + */ +static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) +{ + int ret = ctx->npc; + int dst = ctx->npc + a->imm; + + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, dst); + + return true; +} + +/* + * Calls to a subroutine within the entire 4M (words) Program memory. The + * return address (to the instruction after the CALL) will be stored onto the + * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during + * CALL. This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { + return true; + } + + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_jmp_z(ctx); + + return true; +} + +/* + * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer + * Register in the Register File and the EIND Register in the I/O space. This + * instruction allows for indirect calls to the entire 4M (words) Program + * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme + * during EICALL. This instruction is not available in all devices. Refer to + * the device specific instruction set summary. + */ +static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { + return true; + } + + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_jmp_ez(ctx); + return true; +} + +/* + * Calls to a subroutine within the entire Program memory. The return + * address (to the instruction after the CALL) will be stored onto the Stack. + * (See also RCALL). The Stack Pointer uses a post-decrement scheme during + * CALL. This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_CALL(DisasContext *ctx, arg_CALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { + return true; + } + + int Imm = a->imm; + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, Imm); + + return true; +} + +/* + * Returns from subroutine. The return address is loaded from the STACK. + * The Stack Pointer uses a preincrement scheme during RET. + */ +static bool trans_RET(DisasContext *ctx, arg_RET *a) +{ + gen_pop_ret(ctx, cpu_pc); + + ctx->bstate = DISAS_LOOKUP; + return true; +} + +/* + * Returns from interrupt. The return address is loaded from the STACK and + * the Global Interrupt Flag is set. Note that the Status Register is not + * automatically stored when entering an interrupt routine, and it is not + * restored when returning from an interrupt routine. This must be handled by + * the application program. The Stack Pointer uses a pre-increment scheme + * during RETI. + */ +static bool trans_RETI(DisasContext *ctx, arg_RETI *a) +{ + gen_pop_ret(ctx, cpu_pc); + tcg_gen_movi_tl(cpu_If, 1); + + /* Need to return to main loop to re-evaluate interrupts. */ + ctx->bstate = DISAS_EXIT; + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr, and + * skips the next instruction if Rd = Rr. + */ +static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) +{ + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = cpu_r[a->rd]; + ctx->skip_var1 = cpu_r[a->rr]; + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr. + * None of the registers are changed. All conditional branches can be used + * after this instruction. + */ +static bool trans_CP(DisasContext *ctx, arg_CP *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr and + * also takes into account the previous carry. None of the registers are + * changed. All conditional branches can be used after this instruction. + */ +static bool trans_CPC(DisasContext *ctx, arg_CPC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs a compare between register Rd and a constant. + * The register is not changed. All conditional branches can be used after this + * instruction. + */ +static bool trans_CPI(DisasContext *ctx, arg_CPI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = a->imm; + TCGv Rr = tcg_const_i32(Imm); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * This instruction tests a single bit in a register and skips the next + * instruction if the bit is cleared. + */ +static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) +{ + TCGv Rr = cpu_r[a->rr]; + + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = tcg_temp_new(); + ctx->free_skip_var0 = true; + + tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); + return true; +} + +/* + * This instruction tests a single bit in a register and skips the next + * instruction if the bit is set. + */ +static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) +{ + TCGv Rr = cpu_r[a->rr]; + + ctx->skip_cond = TCG_COND_NE; + ctx->skip_var0 = tcg_temp_new(); + ctx->free_skip_var0 = true; + + tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); + return true; +} + +/* + * This instruction tests a single bit in an I/O Register and skips the + * next instruction if the bit is cleared. This instruction operates on the + * lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) +{ + TCGv temp = tcg_const_i32(a->reg); + + gen_helper_inb(temp, cpu_env, temp); + tcg_gen_andi_tl(temp, temp, 1 << a->bit); + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = temp; + ctx->free_skip_var0 = true; + + return true; +} + +/* + * This instruction tests a single bit in an I/O Register and skips the + * next instruction if the bit is set. This instruction operates on the lower + * 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) +{ + TCGv temp = tcg_const_i32(a->reg); + + gen_helper_inb(temp, cpu_env, temp); + tcg_gen_andi_tl(temp, temp, 1 << a->bit); + ctx->skip_cond = TCG_COND_NE; + ctx->skip_var0 = temp; + ctx->free_skip_var0 = true; + + return true; +} + +/* + * Conditional relative branch. Tests a single bit in SREG and branches + * relatively to PC if the bit is cleared. This instruction branches relatively + * to PC in either direction (PC - 63 < = destination <= PC + 64). The + * parameter k is the offset from PC and is represented in two's complement + * form. + */ +static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) +{ + TCGLabel *not_taken = gen_new_label(); + + TCGv var; + + switch (a->bit) { + case 0x00: + var = cpu_Cf; + break; + case 0x01: + var = cpu_Zf; + break; + case 0x02: + var = cpu_Nf; + break; + case 0x03: + var = cpu_Vf; + break; + case 0x04: + var = cpu_Sf; + break; + case 0x05: + var = cpu_Hf; + break; + case 0x06: + var = cpu_Tf; + break; + case 0x07: + var = cpu_If; + break; + default: + g_assert_not_reached(); + } + + tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); + gen_goto_tb(ctx, 0, ctx->npc + a->imm); + gen_set_label(not_taken); + + ctx->bstate = DISAS_CHAIN; + return true; +} + +/* + * Conditional relative branch. Tests a single bit in SREG and branches + * relatively to PC if the bit is set. This instruction branches relatively to + * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k + * is the offset from PC and is represented in two's complement form. + */ +static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) +{ + TCGLabel *not_taken = gen_new_label(); + + TCGv var; + + switch (a->bit) { + case 0x00: + var = cpu_Cf; + break; + case 0x01: + var = cpu_Zf; + break; + case 0x02: + var = cpu_Nf; + break; + case 0x03: + var = cpu_Vf; + break; + case 0x04: + var = cpu_Sf; + break; + case 0x05: + var = cpu_Hf; + break; + case 0x06: + var = cpu_Tf; + break; + case 0x07: + var = cpu_If; + break; + default: + g_assert_not_reached(); + } + + tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); + gen_goto_tb(ctx, 0, ctx->npc + a->imm); + gen_set_label(not_taken); + + ctx->bstate = DISAS_CHAIN; + return true; +} + +/* + * Data Transfer Instructions + */ + +/* + * in the gen_set_addr & gen_get_addr functions + * H assumed to be in 0x00ff0000 format + * M assumed to be in 0x000000ff format + * L assumed to be in 0x000000ff format + */ +static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) +{ + + tcg_gen_andi_tl(L, addr, 0x000000ff); + + tcg_gen_andi_tl(M, addr, 0x0000ff00); + tcg_gen_shri_tl(M, M, 8); + + tcg_gen_andi_tl(H, addr, 0x00ff0000); +} + +static void gen_set_xaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static void gen_set_yaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static void gen_set_zaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) +{ + TCGv addr = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(addr, M, H, 8, 8); + tcg_gen_deposit_tl(addr, L, addr, 8, 16); + + return addr; +} + +static TCGv gen_get_xaddr(void) +{ + return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static TCGv gen_get_yaddr(void) +{ + return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static TCGv gen_get_zaddr(void) +{ + return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +/* + * Load one byte indirect from data space to register and stores an clear + * the bits in data space specified by the register. The instruction can only + * be used towards internal SRAM. The data location is pointed to by the Z (16 + * bits) Pointer Register in the Register File. Memory access is limited to the + * current data segment of 64KB. To access another data segment in devices with + * more than 64KB data space, the RAMPZ in register in the I/O area has to be + * changed. The Z-pointer Register is left unchanged by the operation. This + * instruction is especially suited for clearing status bits stored in SRAM. + */ +static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullwr(cpu_env, data, addr); + } else { + tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */ + } +} + +static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullrd(data, cpu_env, addr); + } else { + tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */ + } +} + +/* + * This instruction makes a copy of one register into another. The source + * register Rr is left unchanged, while the destination register Rd is loaded + * with a copy of Rr. + */ +static bool trans_MOV(DisasContext *ctx, arg_MOV *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + + tcg_gen_mov_tl(Rd, Rr); + + return true; +} + +/* + * This instruction makes a copy of one register pair into another register + * pair. The source register pair Rr+1:Rr is left unchanged, while the + * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This + * instruction is not available in all devices. Refer to the device specific + * instruction set summary. + */ +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + TCGv RrL = cpu_r[a->rr]; + TCGv RrH = cpu_r[a->rr + 1]; + + tcg_gen_mov_tl(RdH, RrH); + tcg_gen_mov_tl(RdL, RrL); + + return true; +} + +/* + * Loads an 8 bit constant directly to register 16 to 31. + */ +static bool trans_LDI(DisasContext *ctx, arg_LDI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int imm = a->imm; + + tcg_gen_movi_tl(Rd, imm); + + return true; +} + +/* + * Loads one byte from the data space to a register. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the register file only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The LDS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_LDS(DisasContext *ctx, arg_LDS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect from the data space to a register. For parts + * with SRAM, the data space consists of the Register File, I/O memory and + * internal SRAM (and external SRAM if applicable). For parts without SRAM, the + * data space consists of the Register File only. In some parts the Flash + * Memory has been mapped to the data space and can be read using this command. + * The EEPROM has a separate address space. The data location is pointed to by + * the X (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data segment + * in devices with more than 64KB data space, the RAMPX in register in the I/O + * area has to be changed. The X-pointer Register can either be left unchanged + * by the operation, or it can be post-incremented or predecremented. These + * features are especially suited for accessing arrays, tables, and Stack + * Pointer usage of the X-pointer Register. Note that only the low byte of the + * X-pointer is updated in devices with no more than 256 bytes data space. For + * such devices, the high byte of the pointer is not used by this instruction + * and can be used for other purposes. The RAMPX Register in the I/O area is + * updated in parts with more than 64KB data space or more than 64KB Program + * memory, and the increment/decrement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. + */ +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Y (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. The Y-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for accessing + * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that + * only the low byte of the Y-pointer is updated in devices with no more than + * 256 bytes data space. For such devices, the high byte of the pointer is not + * used by this instruction and can be used for other purposes. The RAMPY + * Register in the I/O area is updated in parts with more than 64KB data space + * or more than 64KB Program memory, and the increment/decrement/displacement + * is added to the entire 24-bit address on such devices. Not all variants of + * this instruction is available in all devices. Refer to the device specific + * instruction set summary. In the Reduced Core tinyAVR the LD instruction can + * be used to achieve the same operation as LPM since the program memory is + * mapped to the data memory space. + */ +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for Stack Pointer + * usage of the Z-pointer Register, however because the Z-pointer Register can + * be used for indirect subroutine calls, indirect jumps and table lookup, it + * is often more convenient to use the X or Y-pointer as a dedicated Stack + * Pointer. Note that only the low byte of the Z-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPZ Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the + * increment/decrement/displacement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. For using the Z-pointer for table lookup in Program memory see the + * LPM and ELPM instructions. + */ +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte from a Register to the data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The STS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_STS(DisasContext *ctx, arg_STS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect from a register to data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory, and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * + * The data location is pointed to by the X (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPX in register in the I/O area has to be changed. + * + * The X-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the + * X-pointer Register. Note that only the low byte of the X-pointer is updated + * in devices with no more than 256 bytes data space. For such devices, the high + * byte of the pointer is not used by this instruction and can be used for other + * purposes. The RAMPX Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement is added to the entire 24-bit address on such devices. + */ +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDY(DisasContext *ctx, arg_STDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte pointed to by the Z-register into the destination + * register Rd. This instruction features a 100% space effective constant + * initialization or constant data fetch. The Program memory is organized in + * 16-bit words while the Z-pointer is a byte address. Thus, the least + * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high + * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of + * Program memory. The Zpointer Register can either be left unchanged by the + * operation, or it can be incremented. The incrementation does not apply to + * the RAMPZ Register. + * + * Devices with Self-Programming capability can use the LPM instruction to read + * the Fuse and Lock bit values. + */ +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + tcg_gen_andi_tl(L, addr, 0xff); + tcg_gen_shri_tl(addr, addr, 8); + tcg_gen_andi_tl(H, addr, 0xff); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte pointed to by the Z-register and the RAMPZ Register in + * the I/O space, and places this byte in the destination register Rd. This + * instruction features a 100% space effective constant initialization or + * constant data fetch. The Program memory is organized in 16-bit words while + * the Z-pointer is a byte address. Thus, the least significant bit of the + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This + * instruction can address the entire Program memory space. The Z-pointer + * Register can either be left unchanged by the operation, or it can be + * incremented. The incrementation applies to the entire 24-bit concatenation + * of the RAMPZ and Z-pointer Registers. + * + * Devices with Self-Programming capability can use the ELPM instruction to + * read the Fuse and Lock bit value. + */ +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * SPM can be used to erase a page in the Program memory, to write a page + * in the Program memory (that is already erased), and to set Boot Loader Lock + * bits. In some devices, the Program memory can be written one word at a time, + * in other devices an entire page can be programmed simultaneously after first + * filling a temporary page buffer. In all cases, the Program memory must be + * erased one page at a time. When erasing the Program memory, the RAMPZ and + * Z-register are used as page address. When writing the Program memory, the + * RAMPZ and Z-register are used as page or word address, and the R1:R0 + * register pair is used as data(1). When setting the Boot Loader Lock bits, + * the R1:R0 register pair is used as data. Refer to the device documentation + * for detailed description of SPM usage. This instruction can address the + * entire Program memory. + * + * The SPM instruction is not available in all devices. Refer to the device + * specific instruction set summary. + * + * Note: 1. R1 determines the instruction high byte, and R0 determines the + * instruction low byte. + */ +static bool trans_SPM(DisasContext *ctx, arg_SPM *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { + return true; + } + + return true; +} + +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { + return true; + } + + return true; +} + +/* + * Loads data from the I/O Space (Ports, Timers, Configuration Registers, + * etc.) into register Rd in the Register File. + */ +static bool trans_IN(DisasContext *ctx, arg_IN *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_inb(Rd, cpu_env, port); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * Stores data from register Rr in the Register File to I/O Space (Ports, + * Timers, Configuration Registers, etc.). + */ +static bool trans_OUT(DisasContext *ctx, arg_OUT *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_outb(cpu_env, port, Rd); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * This instruction stores the contents of register Rr on the STACK. The + * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is + * not available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) +{ + TCGv Rd = cpu_r[a->rd]; + + gen_data_store(ctx, Rd, cpu_sp); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + return true; +} + +/* + * This instruction loads register Rd with a byte from the STACK. The Stack + * Pointer is pre-incremented by 1 before the POP. This instruction is not + * available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_POP(DisasContext *ctx, arg_POP *a) +{ + /* + * Using a temp to work around some strange behaviour: + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + * gen_data_load(ctx, Rd, cpu_sp); + * seems to cause the add to happen twice. + * This doesn't happen if either the add or the load is removed. + */ + TCGv t1 = tcg_temp_new_i32(); + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_addi_tl(t1, cpu_sp, 1); + gen_data_load(ctx, Rd, t1); + tcg_gen_mov_tl(cpu_sp, t1); + + return true; +} + +/* + * Exchanges one byte indirect between register and data space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for writing/reading status bits stored in SRAM. + */ +static bool trans_XCH(DisasContext *ctx, arg_XCH *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, t0, addr); + gen_data_store(ctx, Rd, addr); + tcg_gen_mov_tl(Rd, t0); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and set bits in data + * space specified by the register. The instruction can only be used towards + * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for setting status bits stored in SRAM. + */ +static bool trans_LAS(DisasContext *ctx, arg_LAS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_or_tl(t1, t0, Rr); + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and stores and clear + * the bits in data space specified by the register. The instruction can + * only be used towards internal SRAM. The data location is pointed to by + * the Z (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data + * segment in devices with more than 64KB data space, the RAMPZ in register + * in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for clearing status bits stored in SRAM. + */ +static bool trans_LAC(DisasContext *ctx, arg_LAC *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + + +/* + * Load one byte indirect from data space to register and toggles bits in + * the data space specified by the register. The instruction can only be used + * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for changing status bits stored in SRAM. + */ +static bool trans_LAT(DisasContext *ctx, arg_LAT *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_xor_tl(t1, t0, Rd); + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Bit and Bit-test Instructions + */ +static void gen_rshift_ZNVSf(TCGv R) +{ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +/* + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is + * loaded into the C Flag of the SREG. This operation effectively divides an + * unsigned value by two. The C Flag can be used to round the result. + */ +static bool trans_LSR(DisasContext *ctx, arg_LSR *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_andi_tl(cpu_Cf, Rd, 1); + tcg_gen_shri_tl(Rd, Rd, 1); + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ + tcg_gen_movi_tl(cpu_Nf, 0); + tcg_gen_mov_tl(cpu_Vf, cpu_Cf); + tcg_gen_mov_tl(cpu_Sf, cpu_Vf); + + return true; +} + +/* + * Shifts all bits in Rd one place to the right. The C Flag is shifted into + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined + * with ASR, effectively divides multi-byte signed values by two. Combined with + * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag + * can be used to round the result. + */ +static bool trans_ROR(DisasContext *ctx, arg_ROR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_shli_tl(t0, cpu_Cf, 7); + + /* update status register */ + tcg_gen_andi_tl(cpu_Cf, Rd, 1); + + /* update output register */ + tcg_gen_shri_tl(Rd, Rd, 1); + tcg_gen_or_tl(Rd, Rd, t0); + + /* update status register */ + gen_rshift_ZNVSf(Rd); + + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 + * is loaded into the C Flag of the SREG. This operation effectively divides a + * signed value by two without changing its sign. The Carry Flag can be used to + * round the result. + */ +static bool trans_ASR(DisasContext *ctx, arg_ASR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + + /* update status register */ + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ + + /* update output register */ + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ + tcg_gen_shri_tl(Rd, Rd, 1); + tcg_gen_or_tl(Rd, Rd, t0); + + /* update status register */ + gen_rshift_ZNVSf(Rd); + + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Swaps high and low nibbles in a register. + */ +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_andi_tl(t0, Rd, 0x0f); + tcg_gen_shli_tl(t0, t0, 4); + tcg_gen_andi_tl(t1, Rd, 0xf0); + tcg_gen_shri_tl(t1, t1, 4); + tcg_gen_or_tl(Rd, t0, t1); + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Sets a specified bit in an I/O Register. This instruction operates on + * the lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBI(DisasContext *ctx, arg_SBI *a) +{ + TCGv data = tcg_temp_new_i32(); + TCGv port = tcg_const_i32(a->reg); + + gen_helper_inb(data, cpu_env, port); + tcg_gen_ori_tl(data, data, 1 << a->bit); + gen_helper_outb(cpu_env, port, data); + + tcg_temp_free_i32(port); + tcg_temp_free_i32(data); + + return true; +} + +/* + * Clears a specified bit in an I/O Register. This instruction operates on + * the lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_CBI(DisasContext *ctx, arg_CBI *a) +{ + TCGv data = tcg_temp_new_i32(); + TCGv port = tcg_const_i32(a->reg); + + gen_helper_inb(data, cpu_env, port); + tcg_gen_andi_tl(data, data, ~(1 << a->bit)); + gen_helper_outb(cpu_env, port, data); + + tcg_temp_free_i32(data); + tcg_temp_free_i32(port); + + return true; +} + +/* + * Stores bit b from Rd to the T Flag in SREG (Status Register). + */ +static bool trans_BST(DisasContext *ctx, arg_BST *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); + + return true; +} + +/* + * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. + */ +static bool trans_BLD(DisasContext *ctx, arg_BLD *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ + tcg_gen_or_tl(Rd, Rd, t1); + + tcg_temp_free_i32(t1); + + return true; +} + +/* + * Sets a single Flag or bit in SREG. + */ +static bool trans_BSET(DisasContext *ctx, arg_BSET *a) +{ + switch (a->bit) { + case 0x00: + tcg_gen_movi_tl(cpu_Cf, 0x01); + break; + case 0x01: + tcg_gen_movi_tl(cpu_Zf, 0x01); + break; + case 0x02: + tcg_gen_movi_tl(cpu_Nf, 0x01); + break; + case 0x03: + tcg_gen_movi_tl(cpu_Vf, 0x01); + break; + case 0x04: + tcg_gen_movi_tl(cpu_Sf, 0x01); + break; + case 0x05: + tcg_gen_movi_tl(cpu_Hf, 0x01); + break; + case 0x06: + tcg_gen_movi_tl(cpu_Tf, 0x01); + break; + case 0x07: + tcg_gen_movi_tl(cpu_If, 0x01); + break; + } + + return true; +} + +/* + * Clears a single Flag in SREG. + */ +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) +{ + switch (a->bit) { + case 0x00: + tcg_gen_movi_tl(cpu_Cf, 0x00); + break; + case 0x01: + tcg_gen_movi_tl(cpu_Zf, 0x00); + break; + case 0x02: + tcg_gen_movi_tl(cpu_Nf, 0x00); + break; + case 0x03: + tcg_gen_movi_tl(cpu_Vf, 0x00); + break; + case 0x04: + tcg_gen_movi_tl(cpu_Sf, 0x00); + break; + case 0x05: + tcg_gen_movi_tl(cpu_Hf, 0x00); + break; + case 0x06: + tcg_gen_movi_tl(cpu_Tf, 0x00); + break; + case 0x07: + tcg_gen_movi_tl(cpu_If, 0x00); + break; + } + + return true; +} + +/* + * MCU Control Instructions + */ + +/* + * The BREAK instruction is used by the On-chip Debug system, and is + * normally not used in the application software. When the BREAK instruction is + * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip + * Debugger access to internal resources. If any Lock bits are set, or either + * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK + * instruction as a NOP and will not enter the Stopped mode. This instruction + * is not available in all devices. Refer to the device specific instruction + * set summary. + */ +static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { + return true; + } + +#ifdef BREAKPOINT_ON_BREAK + tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); + gen_helper_debug(cpu_env); + ctx->bstate = DISAS_EXIT; +#else + /* NOP */ +#endif + + return true; +} + +/* + * This instruction performs a single cycle No Operation. + */ +static bool trans_NOP(DisasContext *ctx, arg_NOP *a) +{ + + /* NOP */ + + return true; +} + +/* + * This instruction sets the circuit in sleep mode defined by the MCU + * Control Register. + */ +static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) +{ + gen_helper_sleep(cpu_env); + ctx->bstate = DISAS_NORETURN; + return true; +} + +/* + * This instruction resets the Watchdog Timer. This instruction must be + * executed within a limited time given by the WD prescaler. See the Watchdog + * Timer hardware specification. + */ +static bool trans_WDR(DisasContext *ctx, arg_WDR *a) +{ + gen_helper_wdr(cpu_env); + + return true; +} + +/* + * Core translation mechanism functions: + * + * - translate() + * - canonicalize_skip() + * - gen_intermediate_code() + * - restore_state_to_opc() + * + */ +static void translate(DisasContext *ctx) +{ + uint32_t opcode = next_word(ctx); + + if (!decode_insn(ctx, opcode)) { + gen_helper_unsupported(cpu_env); + ctx->bstate = DISAS_NORETURN; + } +} + +/* Standardize the cpu_skip condition to NE. */ +static bool canonicalize_skip(DisasContext *ctx) +{ + switch (ctx->skip_cond) { + case TCG_COND_NEVER: + /* Normal case: cpu_skip is known to be false. */ + return false; + + case TCG_COND_ALWAYS: + /* + * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. + * The breakpoint is on the instruction being skipped, at the start + * of the TranslationBlock. No need to update. + */ + return false; + + case TCG_COND_NE: + if (ctx->skip_var1 == NULL) { + tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); + } else { + tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); + ctx->skip_var1 = NULL; + } + break; + + default: + /* Convert to a NE condition vs 0. */ + if (ctx->skip_var1 == NULL) { + tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); + } else { + tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, + ctx->skip_var0, ctx->skip_var1); + ctx->skip_var1 = NULL; + } + ctx->skip_cond = TCG_COND_NE; + break; + } + if (ctx->free_skip_var0) { + tcg_temp_free(ctx->skip_var0); + ctx->free_skip_var0 = false; + } + ctx->skip_var0 = cpu_skip; + return true; +} + +void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) +{ + CPUAVRState *env = cs->env_ptr; + DisasContext ctx = { + .tb = tb, + .cs = cs, + .env = env, + .memidx = 0, + .bstate = DISAS_NEXT, + .skip_cond = TCG_COND_NEVER, + .singlestep = cs->singlestep_enabled, + }; + target_ulong pc_start = tb->pc / 2; + int num_insns = 0; + + if (tb->flags & TB_FLAGS_FULL_ACCESS) { + /* + * This flag is set by ST/LD instruction we will regenerate it ONLY + * with mem/cpu memory access instead of mem access + */ + max_insns = 1; + } + if (ctx.singlestep) { + max_insns = 1; + } + + gen_tb_start(tb); + + ctx.npc = pc_start; + if (tb->flags & TB_FLAGS_SKIP) { + ctx.skip_cond = TCG_COND_ALWAYS; + ctx.skip_var0 = cpu_skip; + } + + do { + TCGLabel *skip_label = NULL; + + /* translate current instruction */ + tcg_gen_insn_start(ctx.npc); + num_insns++; + + /* + * this is due to some strange GDB behavior + * let's assume main has address 0x100 + * b main - sets breakpoint at address 0x00000100 (code) + * b *0x100 - sets breakpoint at address 0x00800100 (data) + */ + if (unlikely(!ctx.singlestep && + (cpu_breakpoint_test(cs, OFFSET_CODE + ctx.npc * 2, BP_ANY) || + cpu_breakpoint_test(cs, OFFSET_DATA + ctx.npc * 2, BP_ANY)))) { + canonicalize_skip(&ctx); + tcg_gen_movi_tl(cpu_pc, ctx.npc); + gen_helper_debug(cpu_env); + goto done_generating; + } + + /* Conditionally skip the next instruction, if indicated. */ + if (ctx.skip_cond != TCG_COND_NEVER) { + skip_label = gen_new_label(); + if (ctx.skip_var0 == cpu_skip) { + /* + * Copy cpu_skip so that we may zero it before the branch. + * This ensures that cpu_skip is non-zero after the label + * if and only if the skipped insn itself sets a skip. + */ + ctx.free_skip_var0 = true; + ctx.skip_var0 = tcg_temp_new(); + tcg_gen_mov_tl(ctx.skip_var0, cpu_skip); + tcg_gen_movi_tl(cpu_skip, 0); + } + if (ctx.skip_var1 == NULL) { + tcg_gen_brcondi_tl(ctx.skip_cond, ctx.skip_var0, 0, skip_label); + } else { + tcg_gen_brcond_tl(ctx.skip_cond, ctx.skip_var0, + ctx.skip_var1, skip_label); + ctx.skip_var1 = NULL; + } + if (ctx.free_skip_var0) { + tcg_temp_free(ctx.skip_var0); + ctx.free_skip_var0 = false; + } + ctx.skip_cond = TCG_COND_NEVER; + ctx.skip_var0 = NULL; + } + + translate(&ctx); + + if (skip_label) { + canonicalize_skip(&ctx); + gen_set_label(skip_label); + if (ctx.bstate == DISAS_NORETURN) { + ctx.bstate = DISAS_CHAIN; + } + } + } while (ctx.bstate == DISAS_NEXT + && num_insns < max_insns + && (ctx.npc - pc_start) * 2 < TARGET_PAGE_SIZE - 4 + && !tcg_op_buf_full()); + + if (tb->cflags & CF_LAST_IO) { + gen_io_end(); + } + + bool nonconst_skip = canonicalize_skip(&ctx); + + switch (ctx.bstate) { + case DISAS_NORETURN: + assert(!nonconst_skip); + break; + case DISAS_NEXT: + case DISAS_TOO_MANY: + case DISAS_CHAIN: + if (!nonconst_skip) { + /* Note gen_goto_tb checks singlestep. */ + gen_goto_tb(&ctx, 1, ctx.npc); + break; + } + tcg_gen_movi_tl(cpu_pc, ctx.npc); + /* fall through */ + case DISAS_LOOKUP: + if (!ctx.singlestep) { + tcg_gen_lookup_and_goto_ptr(); + break; + } + /* fall through */ + case DISAS_EXIT: + if (ctx.singlestep) { + gen_helper_debug(cpu_env); + } else { + tcg_gen_exit_tb(NULL, 0); + } + break; + default: + g_assert_not_reached(); + } + +done_generating: + gen_tb_end(tb, num_insns); + + tb->size = (ctx.npc - pc_start) * 2; + tb->icount = num_insns; + +#ifdef DEBUG_DISAS + if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) + && qemu_log_in_addr_range(tb->pc)) { + FILE *fd; + fd = qemu_log_lock(); + qemu_log("IN: %s\n", lookup_symbol(tb->pc)); + log_target_disas(cs, tb->pc, tb->size); + qemu_log("\n"); + qemu_log_unlock(fd); + } +#endif +} + +void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb, + target_ulong *data) +{ + env->pc_w = data[0]; +} diff --git a/tests/acceptance/machine_avr6.py b/tests/acceptance/machine_avr6.py new file mode 100644 index 0000000000..6baf4e9c7f --- /dev/null +++ b/tests/acceptance/machine_avr6.py @@ -0,0 +1,50 @@ +# +# QEMU AVR acceptance tests +# +# Copyright (c) 2019-2020 Michael Rolnik <mrolnik@gmail.com> +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. +# + +import time + +from avocado_qemu import Test + +class AVR6Machine(Test): + timeout = 5 + + def test_freertos(self): + """ + :avocado: tags=arch:avr + :avocado: tags=machine:arduino-mega-2560-v3 + """ + """ + https://github.com/seharris/qemu-avr-tests/raw/master/free-rtos/Demo/AVR_ATMega2560_GCC/demo.elf + constantly prints out 'ABCDEFGHIJKLMNOPQRSTUVWXABCDEFGHIJKLMNOPQRSTUVWX' + """ + rom_url = ('https://github.com/seharris/qemu-avr-tests' + '/raw/36c3e67b8755dcf/free-rtos/Demo' + '/AVR_ATMega2560_GCC/demo.elf') + rom_hash = '7eb521f511ca8f2622e0a3c5e8dd686efbb911d4' + rom_path = self.fetch_asset(rom_url, asset_hash=rom_hash) + + self.vm.add_args('-bios', rom_path) + self.vm.add_args('-nographic') + self.vm.launch() + + time.sleep(2) + self.vm.shutdown() + + self.assertIn('ABCDEFGHIJKLMNOPQRSTUVWXABCDEFGHIJKLMNOPQRSTUVWX', + self.vm.get_log()) diff --git a/tests/qtest/Makefile.include b/tests/qtest/Makefile.include index 98af2c2d93..994ac47399 100644 --- a/tests/qtest/Makefile.include +++ b/tests/qtest/Makefile.include @@ -66,6 +66,8 @@ check-qtest-i386-y += numa-test check-qtest-x86_64-y += $(check-qtest-i386-y) +check-qtest-avr-y += boot-serial-test + check-qtest-alpha-y += boot-serial-test check-qtest-alpha-$(CONFIG_VGA) += display-vga-test diff --git a/tests/qtest/boot-serial-test.c b/tests/qtest/boot-serial-test.c index 85a3614286..bfe7624dc6 100644 --- a/tests/qtest/boot-serial-test.c +++ b/tests/qtest/boot-serial-test.c @@ -17,6 +17,15 @@ #include "libqtest.h" #include "libqos/libqos-spapr.h" +static const uint8_t bios_avr[] = { + 0x88, 0xe0, /* ldi r24, 0x08 */ + 0x80, 0x93, 0xc1, 0x00, /* sts 0x00C1, r24 ; Enable tx */ + 0x86, 0xe0, /* ldi r24, 0x06 */ + 0x80, 0x93, 0xc2, 0x00, /* sts 0x00C2, r24 ; Set the data bits to 8 */ + 0x84, 0xe5, /* ldi r24, 0x54 */ + 0x80, 0x93, 0xc6, 0x00, /* sts 0x00C6, r24 ; Output 'T' */ +}; + static const uint8_t kernel_mcf5208[] = { 0x41, 0xf9, 0xfc, 0x06, 0x00, 0x00, /* lea 0xfc060000,%a0 */ 0x10, 0x3c, 0x00, 0x54, /* move.b #'T',%d0 */ @@ -104,6 +113,8 @@ typedef struct testdef { static testdef_t tests[] = { { "alpha", "clipper", "", "PCI:" }, + { "avr", "arduino-duemilanove", "", "T", sizeof(bios_avr), NULL, bios_avr }, + { "avr", "arduino-mega-2560-v3", "", "T", sizeof(bios_avr), NULL, bios_avr}, { "ppc", "ppce500", "", "U-Boot" }, { "ppc", "40p", "-vga none -boot d", "Trying cd:," }, { "ppc", "g3beige", "", "PowerPC,750" }, diff --git a/tests/qtest/machine-none-test.c b/tests/qtest/machine-none-test.c index 8b7abea8af..57107f1aec 100644 --- a/tests/qtest/machine-none-test.c +++ b/tests/qtest/machine-none-test.c @@ -27,6 +27,7 @@ static struct arch2cpu cpus_map[] = { /* tested targets list */ { "arm", "cortex-a15" }, { "aarch64", "cortex-a57" }, + { "avr", "avr6-avr-cpu" }, { "x86_64", "qemu64,apic-id=0" }, { "i386", "qemu32,apic-id=0" }, { "alpha", "ev67" }, |