diff options
author | Richard Henderson <richard.henderson@linaro.org> | 2020-11-14 12:53:12 -0800 |
---|---|---|
committer | Richard Henderson <richard.henderson@linaro.org> | 2021-05-16 07:13:51 -0500 |
commit | afc34931ebb919e41dcafcfea14e0ac8aff6e9ce (patch) | |
tree | a957509a2f4f1c02e7d781b7f31f911ceb6dd472 | |
parent | 9882ccaff93b5f4c8fdc775074dd92f1a9a17b61 (diff) |
softfloat: Move round_to_int to softfloat-parts.c.inc
At the same time, convert to pointers, split out
parts$N_round_to_int_normal, define a macro for
parts_round_to_int using QEMU_GENERIC.
This necessarily meant some rearrangement to the
rount_to_{,u}int_and_pack routines, so go ahead and
convert to parts_round_to_int_normal, which in turn
allows cleaning up of the raised exception handling.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
-rw-r--r-- | fpu/softfloat-parts.c.inc | 157 | ||||
-rw-r--r-- | fpu/softfloat.c | 432 |
2 files changed, 262 insertions, 327 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index f8165d92f9..b2c4624d8c 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -594,3 +594,160 @@ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b, a->cls = float_class_inf; return a; } + +/* + * Rounds the floating-point value `a' to an integer, and returns the + * result as a floating-point value. The operation is performed + * according to the IEC/IEEE Standard for Binary Floating-Point + * Arithmetic. + * + * parts_round_to_int_normal is an internal helper function for + * normal numbers only, returning true for inexact but not directly + * raising float_flag_inexact. + */ +static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode, + int scale, int frac_size) +{ + uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc; + int shift_adj; + + scale = MIN(MAX(scale, -0x10000), 0x10000); + a->exp += scale; + + if (a->exp < 0) { + bool one; + + /* All fractional */ + switch (rmode) { + case float_round_nearest_even: + one = false; + if (a->exp == -1) { + FloatPartsN tmp; + /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */ + frac_add(&tmp, a, a); + /* Anything remaining means frac > 0.5. */ + one = !frac_eqz(&tmp); + } + break; + case float_round_ties_away: + one = a->exp == -1; + break; + case float_round_to_zero: + one = false; + break; + case float_round_up: + one = !a->sign; + break; + case float_round_down: + one = a->sign; + break; + case float_round_to_odd: + one = true; + break; + default: + g_assert_not_reached(); + } + + frac_clear(a); + a->exp = 0; + if (one) { + a->frac_hi = DECOMPOSED_IMPLICIT_BIT; + } else { + a->cls = float_class_zero; + } + return true; + } + + if (a->exp >= frac_size) { + /* All integral */ + return false; + } + + if (N > 64 && a->exp < N - 64) { + /* + * Rounding is not in the low word -- shift lsb to bit 2, + * which leaves room for sticky and rounding bit. + */ + shift_adj = (N - 1) - (a->exp + 2); + frac_shrjam(a, shift_adj); + frac_lsb = 1 << 2; + } else { + shift_adj = 0; + frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63); + } + + frac_lsbm1 = frac_lsb >> 1; + rnd_mask = frac_lsb - 1; + rnd_even_mask = rnd_mask | frac_lsb; + + if (!(a->frac_lo & rnd_mask)) { + /* Fractional bits already clear, undo the shift above. */ + frac_shl(a, shift_adj); + return false; + } + + switch (rmode) { + case float_round_nearest_even: + inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); + break; + case float_round_ties_away: + inc = frac_lsbm1; + break; + case float_round_to_zero: + inc = 0; + break; + case float_round_up: + inc = a->sign ? 0 : rnd_mask; + break; + case float_round_down: + inc = a->sign ? rnd_mask : 0; + break; + case float_round_to_odd: + inc = a->frac_lo & frac_lsb ? 0 : rnd_mask; + break; + default: + g_assert_not_reached(); + } + + if (shift_adj == 0) { + if (frac_addi(a, a, inc)) { + frac_shr(a, 1); + a->frac_hi |= DECOMPOSED_IMPLICIT_BIT; + a->exp++; + } + a->frac_lo &= ~rnd_mask; + } else { + frac_addi(a, a, inc); + a->frac_lo &= ~rnd_mask; + /* Be careful shifting back, not to overflow */ + frac_shl(a, shift_adj - 1); + if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) { + a->exp++; + } else { + frac_add(a, a, a); + } + } + return true; +} + +static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode, + int scale, float_status *s, + const FloatFmt *fmt) +{ + switch (a->cls) { + case float_class_qnan: + case float_class_snan: + parts_return_nan(a, s); + break; + case float_class_zero: + case float_class_inf: + break; + case float_class_normal: + if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) { + float_raise(float_flag_inexact, s); + } + break; + default: + g_assert_not_reached(); + } +} diff --git a/fpu/softfloat.c b/fpu/softfloat.c index d056b5730b..5647a05d5d 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -811,6 +811,24 @@ static FloatParts128 *parts128_div(FloatParts128 *a, FloatParts128 *b, #define parts_div(A, B, S) \ PARTS_GENERIC_64_128(div, A)(A, B, S) +static bool parts64_round_to_int_normal(FloatParts64 *a, FloatRoundMode rm, + int scale, int frac_size); +static bool parts128_round_to_int_normal(FloatParts128 *a, FloatRoundMode r, + int scale, int frac_size); + +#define parts_round_to_int_normal(A, R, C, F) \ + PARTS_GENERIC_64_128(round_to_int_normal, A)(A, R, C, F) + +static void parts64_round_to_int(FloatParts64 *a, FloatRoundMode rm, + int scale, float_status *s, + const FloatFmt *fmt); +static void parts128_round_to_int(FloatParts128 *a, FloatRoundMode r, + int scale, float_status *s, + const FloatFmt *fmt); + +#define parts_round_to_int(A, R, C, S, F) \ + PARTS_GENERIC_64_128(round_to_int, A)(A, R, C, S, F) + /* * Helper functions for softfloat-parts.c.inc, per-size operations. */ @@ -2285,153 +2303,52 @@ float128 float64_to_float128(float64 a, float_status *s) } /* - * Rounds the floating-point value `a' to an integer, and returns the - * result as a floating-point value. The operation is performed - * according to the IEC/IEEE Standard for Binary Floating-Point - * Arithmetic. + * Round to integral value */ -static FloatParts64 round_to_int(FloatParts64 a, FloatRoundMode rmode, - int scale, float_status *s) -{ - switch (a.cls) { - case float_class_qnan: - case float_class_snan: - parts_return_nan(&a, s); - break; - - case float_class_zero: - case float_class_inf: - /* already "integral" */ - break; - - case float_class_normal: - scale = MIN(MAX(scale, -0x10000), 0x10000); - a.exp += scale; - - if (a.exp >= DECOMPOSED_BINARY_POINT) { - /* already integral */ - break; - } - if (a.exp < 0) { - bool one; - /* all fractional */ - float_raise(float_flag_inexact, s); - switch (rmode) { - case float_round_nearest_even: - one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT; - break; - case float_round_ties_away: - one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT; - break; - case float_round_to_zero: - one = false; - break; - case float_round_up: - one = !a.sign; - break; - case float_round_down: - one = a.sign; - break; - case float_round_to_odd: - one = true; - break; - default: - g_assert_not_reached(); - } - - if (one) { - a.frac = DECOMPOSED_IMPLICIT_BIT; - a.exp = 0; - } else { - a.cls = float_class_zero; - } - } else { - uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp; - uint64_t frac_lsbm1 = frac_lsb >> 1; - uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb; - uint64_t rnd_mask = rnd_even_mask >> 1; - uint64_t inc; - - switch (rmode) { - case float_round_nearest_even: - inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); - break; - case float_round_ties_away: - inc = frac_lsbm1; - break; - case float_round_to_zero: - inc = 0; - break; - case float_round_up: - inc = a.sign ? 0 : rnd_mask; - break; - case float_round_down: - inc = a.sign ? rnd_mask : 0; - break; - case float_round_to_odd: - inc = a.frac & frac_lsb ? 0 : rnd_mask; - break; - default: - g_assert_not_reached(); - } - - if (a.frac & rnd_mask) { - float_raise(float_flag_inexact, s); - if (uadd64_overflow(a.frac, inc, &a.frac)) { - a.frac >>= 1; - a.frac |= DECOMPOSED_IMPLICIT_BIT; - a.exp++; - } - a.frac &= ~rnd_mask; - } - } - break; - default: - g_assert_not_reached(); - } - return a; -} - float16 float16_round_to_int(float16 a, float_status *s) { - FloatParts64 pa, pr; + FloatParts64 p; - float16_unpack_canonical(&pa, a, s); - pr = round_to_int(pa, s->float_rounding_mode, 0, s); - return float16_round_pack_canonical(&pr, s); + float16_unpack_canonical(&p, a, s); + parts_round_to_int(&p, s->float_rounding_mode, 0, s, &float16_params); + return float16_round_pack_canonical(&p, s); } float32 float32_round_to_int(float32 a, float_status *s) { - FloatParts64 pa, pr; + FloatParts64 p; - float32_unpack_canonical(&pa, a, s); - pr = round_to_int(pa, s->float_rounding_mode, 0, s); - return float32_round_pack_canonical(&pr, s); + float32_unpack_canonical(&p, a, s); + parts_round_to_int(&p, s->float_rounding_mode, 0, s, &float32_params); + return float32_round_pack_canonical(&p, s); } float64 float64_round_to_int(float64 a, float_status *s) { - FloatParts64 pa, pr; + FloatParts64 p; - float64_unpack_canonical(&pa, a, s); - pr = round_to_int(pa, s->float_rounding_mode, 0, s); - return float64_round_pack_canonical(&pr, s); + float64_unpack_canonical(&p, a, s); + parts_round_to_int(&p, s->float_rounding_mode, 0, s, &float64_params); + return float64_round_pack_canonical(&p, s); } -/* - * Rounds the bfloat16 value `a' to an integer, and returns the - * result as a bfloat16 value. - */ - bfloat16 bfloat16_round_to_int(bfloat16 a, float_status *s) { - FloatParts64 pa, pr; + FloatParts64 p; - bfloat16_unpack_canonical(&pa, a, s); - pr = round_to_int(pa, s->float_rounding_mode, 0, s); - return bfloat16_round_pack_canonical(&pr, s); + bfloat16_unpack_canonical(&p, a, s); + parts_round_to_int(&p, s->float_rounding_mode, 0, s, &bfloat16_params); + return bfloat16_round_pack_canonical(&p, s); +} + +float128 float128_round_to_int(float128 a, float_status *s) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, s); + parts_round_to_int(&p, s->float_rounding_mode, 0, s, &float128_params); + return float128_round_pack_canonical(&p, s); } /* @@ -2445,48 +2362,58 @@ bfloat16 bfloat16_round_to_int(bfloat16 a, float_status *s) * is returned. */ -static int64_t round_to_int_and_pack(FloatParts64 in, FloatRoundMode rmode, +static int64_t round_to_int_and_pack(FloatParts64 p, FloatRoundMode rmode, int scale, int64_t min, int64_t max, float_status *s) { + int flags = 0; uint64_t r; - int orig_flags = get_float_exception_flags(s); - FloatParts64 p = round_to_int(in, rmode, scale, s); switch (p.cls) { case float_class_snan: case float_class_qnan: - s->float_exception_flags = orig_flags | float_flag_invalid; - return max; + flags = float_flag_invalid; + r = max; + break; + case float_class_inf: - s->float_exception_flags = orig_flags | float_flag_invalid; - return p.sign ? min : max; + flags = float_flag_invalid; + r = p.sign ? min : max; + break; + case float_class_zero: return 0; + case float_class_normal: + /* TODO: 62 = N - 2, frac_size for rounding */ + if (parts_round_to_int_normal(&p, rmode, scale, 62)) { + flags = float_flag_inexact; + } + if (p.exp <= DECOMPOSED_BINARY_POINT) { r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); } else { r = UINT64_MAX; } if (p.sign) { - if (r <= -(uint64_t) min) { - return -r; - } else { - s->float_exception_flags = orig_flags | float_flag_invalid; - return min; - } - } else { - if (r <= max) { - return r; + if (r <= -(uint64_t)min) { + r = -r; } else { - s->float_exception_flags = orig_flags | float_flag_invalid; - return max; + flags = float_flag_invalid; + r = min; } + } else if (r > max) { + flags = float_flag_invalid; + r = max; } + break; + default: g_assert_not_reached(); } + + float_raise(flags, s); + return r; } int8_t float16_to_int8_scalbn(float16 a, FloatRoundMode rmode, int scale, @@ -2749,49 +2676,59 @@ int64_t bfloat16_to_int64_round_to_zero(bfloat16 a, float_status *s) * flag. */ -static uint64_t round_to_uint_and_pack(FloatParts64 in, FloatRoundMode rmode, +static uint64_t round_to_uint_and_pack(FloatParts64 p, FloatRoundMode rmode, int scale, uint64_t max, float_status *s) { - int orig_flags = get_float_exception_flags(s); - FloatParts64 p = round_to_int(in, rmode, scale, s); + int flags = 0; uint64_t r; switch (p.cls) { case float_class_snan: case float_class_qnan: - s->float_exception_flags = orig_flags | float_flag_invalid; - return max; + flags = float_flag_invalid; + r = max; + break; + case float_class_inf: - s->float_exception_flags = orig_flags | float_flag_invalid; - return p.sign ? 0 : max; + flags = float_flag_invalid; + r = p.sign ? 0 : max; + break; + case float_class_zero: return 0; + case float_class_normal: - if (p.sign) { - s->float_exception_flags = orig_flags | float_flag_invalid; - return 0; + /* TODO: 62 = N - 2, frac_size for rounding */ + if (parts_round_to_int_normal(&p, rmode, scale, 62)) { + flags = float_flag_inexact; + if (p.cls == float_class_zero) { + r = 0; + break; + } } - if (p.exp <= DECOMPOSED_BINARY_POINT) { - r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); + if (p.sign) { + flags = float_flag_invalid; + r = 0; + } else if (p.exp > DECOMPOSED_BINARY_POINT) { + flags = float_flag_invalid; + r = max; } else { - s->float_exception_flags = orig_flags | float_flag_invalid; - return max; + r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); + if (r > max) { + flags = float_flag_invalid; + r = max; + } } + break; - /* For uint64 this will never trip, but if p.exp is too large - * to shift a decomposed fraction we shall have exited via the - * 3rd leg above. - */ - if (r > max) { - s->float_exception_flags = orig_flags | float_flag_invalid; - return max; - } - return r; default: g_assert_not_reached(); } + + float_raise(flags, s); + return r; } uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode rmode, int scale, @@ -6957,165 +6894,6 @@ floatx80 float128_to_floatx80(float128 a, float_status *status) } /*---------------------------------------------------------------------------- -| Rounds the quadruple-precision floating-point value `a' to an integer, and -| returns the result as a quadruple-precision floating-point value. The -| operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_round_to_int(float128 a, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t lastBitMask, roundBitsMask; - float128 z; - - aExp = extractFloat128Exp( a ); - if ( 0x402F <= aExp ) { - if ( 0x406F <= aExp ) { - if ( ( aExp == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) - ) { - return propagateFloat128NaN(a, a, status); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - switch (status->float_rounding_mode) { - case float_round_nearest_even: - if ( lastBitMask ) { - add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (int64_t) z.low < 0 ) { - ++z.high; - if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - break; - case float_round_ties_away: - if (lastBitMask) { - add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); - } else { - if ((int64_t) z.low < 0) { - ++z.high; - } - } - break; - case float_round_to_zero: - break; - case float_round_up: - if (!extractFloat128Sign(z)) { - add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); - } - break; - case float_round_down: - if (extractFloat128Sign(z)) { - add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); - } - break; - case float_round_to_odd: - /* - * Note that if lastBitMask == 0, the last bit is the lsb - * of high, and roundBitsMask == -1. - */ - if ((lastBitMask ? z.low & lastBitMask : z.high & 1) == 0) { - add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); - } - break; - default: - abort(); - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp < 0x3FFF ) { - if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - float_raise(float_flag_inexact, status); - aSign = extractFloat128Sign( a ); - switch (status->float_rounding_mode) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) - && ( extractFloat128Frac0( a ) - | extractFloat128Frac1( a ) ) - ) { - return packFloat128( aSign, 0x3FFF, 0, 0 ); - } - break; - case float_round_ties_away: - if (aExp == 0x3FFE) { - return packFloat128(aSign, 0x3FFF, 0, 0); - } - break; - case float_round_down: - return - aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) - : packFloat128( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat128( 1, 0, 0, 0 ) - : packFloat128( 0, 0x3FFF, 0, 0 ); - - case float_round_to_odd: - return packFloat128(aSign, 0x3FFF, 0, 0); - - case float_round_to_zero: - break; - } - return packFloat128( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x402F - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - switch (status->float_rounding_mode) { - case float_round_nearest_even: - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - break; - case float_round_ties_away: - z.high += lastBitMask>>1; - break; - case float_round_to_zero: - break; - case float_round_up: - if (!extractFloat128Sign(z)) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - break; - case float_round_down: - if (extractFloat128Sign(z)) { - z.high |= (a.low != 0); - z.high += roundBitsMask; - } - break; - case float_round_to_odd: - if ((z.high & lastBitMask) == 0) { - z.high |= (a.low != 0); - z.high += roundBitsMask; - } - break; - default: - abort(); - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - float_raise(float_flag_inexact, status); - } - return z; - -} - -/*---------------------------------------------------------------------------- | Returns the remainder of the quadruple-precision floating-point value `a' | with respect to the corresponding value `b'. The operation is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |