1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_FEEFRAC_H
#define BITCOIN_UTIL_FEEFRAC_H
#include <stdint.h>
#include <compare>
#include <vector>
#include <span.h>
#include <util/check.h>
/** Data structure storing a fee and size, ordered by increasing fee/size.
*
* The size of a FeeFrac cannot be zero unless the fee is also zero.
*
* FeeFracs have a total ordering, first by increasing feerate (ratio of fee over size), and then
* by decreasing size. The empty FeeFrac (fee and size both 0) sorts last. So for example, the
* following FeeFracs are in sorted order:
*
* - fee=0 size=1 (feerate 0)
* - fee=1 size=2 (feerate 0.5)
* - fee=2 size=3 (feerate 0.667...)
* - fee=2 size=2 (feerate 1)
* - fee=1 size=1 (feerate 1)
* - fee=3 size=2 (feerate 1.5)
* - fee=2 size=1 (feerate 2)
* - fee=0 size=0 (undefined feerate)
*
* A FeeFrac is considered "better" if it sorts after another, by this ordering. All standard
* comparison operators (<=>, ==, !=, >, <, >=, <=) respect this ordering.
*
* The FeeRateCompare, and >> and << operators only compare feerate and treat equal feerate but
* different size as equivalent. The empty FeeFrac is neither lower or higher in feerate than any
* other.
*/
struct FeeFrac
{
/** Fallback version for Mul (see below).
*
* Separate to permit testing on platforms where it isn't actually needed.
*/
static inline std::pair<int64_t, uint32_t> MulFallback(int64_t a, int32_t b) noexcept
{
// Otherwise, emulate 96-bit multiplication using two 64-bit multiplies.
int64_t low = int64_t{static_cast<uint32_t>(a)} * b;
int64_t high = (a >> 32) * b;
return {high + (low >> 32), static_cast<uint32_t>(low)};
}
// Compute a * b, returning an unspecified but totally ordered type.
#ifdef __SIZEOF_INT128__
static inline __int128 Mul(int64_t a, int32_t b) noexcept
{
// If __int128 is available, use 128-bit wide multiply.
return __int128{a} * b;
}
#else
static constexpr auto Mul = MulFallback;
#endif
int64_t fee;
int32_t size;
/** Construct an IsEmpty() FeeFrac. */
constexpr inline FeeFrac() noexcept : fee{0}, size{0} {}
/** Construct a FeeFrac with specified fee and size. */
constexpr inline FeeFrac(int64_t f, int32_t s) noexcept : fee{f}, size{s} {}
constexpr inline FeeFrac(const FeeFrac&) noexcept = default;
constexpr inline FeeFrac& operator=(const FeeFrac&) noexcept = default;
/** Check if this is empty (size and fee are 0). */
bool inline IsEmpty() const noexcept {
return size == 0;
}
/** Add fee and size of another FeeFrac to this one. */
void inline operator+=(const FeeFrac& other) noexcept
{
fee += other.fee;
size += other.size;
}
/** Subtract fee and size of another FeeFrac from this one. */
void inline operator-=(const FeeFrac& other) noexcept
{
fee -= other.fee;
size -= other.size;
}
/** Sum fee and size. */
friend inline FeeFrac operator+(const FeeFrac& a, const FeeFrac& b) noexcept
{
return {a.fee + b.fee, a.size + b.size};
}
/** Subtract both fee and size. */
friend inline FeeFrac operator-(const FeeFrac& a, const FeeFrac& b) noexcept
{
return {a.fee - b.fee, a.size - b.size};
}
/** Check if two FeeFrac objects are equal (both same fee and same size). */
friend inline bool operator==(const FeeFrac& a, const FeeFrac& b) noexcept
{
return a.fee == b.fee && a.size == b.size;
}
/** Compare two FeeFracs just by feerate. */
friend inline std::weak_ordering FeeRateCompare(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a <=> cross_b;
}
/** Check if a FeeFrac object has strictly lower feerate than another. */
friend inline bool operator<<(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a < cross_b;
}
/** Check if a FeeFrac object has strictly higher feerate than another. */
friend inline bool operator>>(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a > cross_b;
}
/** Compare two FeeFracs. <, >, <=, and >= are auto-generated from this. */
friend inline std::strong_ordering operator<=>(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
if (cross_a == cross_b) return b.size <=> a.size;
return cross_a <=> cross_b;
}
/** Swap two FeeFracs. */
friend inline void swap(FeeFrac& a, FeeFrac& b) noexcept
{
std::swap(a.fee, b.fee);
std::swap(a.size, b.size);
}
};
/** Compare the feerate diagrams implied by the provided sorted chunks data.
*
* The implied diagram for each starts at (0, 0), then contains for each chunk the cumulative fee
* and size up to that chunk, and then extends infinitely to the right with a horizontal line.
*
* The caller must guarantee that the sum of the FeeFracs in either of the chunks' data set do not
* overflow (so sum fees < 2^63, and sum sizes < 2^31).
*/
std::partial_ordering CompareChunks(Span<const FeeFrac> chunks0, Span<const FeeFrac> chunks1);
#endif // BITCOIN_UTIL_FEEFRAC_H
|