#!/usr/bin/env python3 # Copyright (c) 2014-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet.""" from decimal import Decimal from itertools import product from test_framework.blocktools import COINBASE_MATURITY from test_framework.descriptors import descsum_create from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_array_result, assert_equal, assert_fee_amount, assert_raises_rpc_error, find_vout_for_address, ) from test_framework.wallet_util import test_address NOT_A_NUMBER_OR_STRING = "Amount is not a number or string" OUT_OF_RANGE = "Amount out of range" class WalletTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.extra_args = [[ "-dustrelayfee=0", "-walletrejectlongchains=0", "-whitelist=noban@127.0.0.1" ]] * self.num_nodes self.setup_clean_chain = True self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): self.setup_nodes() # Only need nodes 0-2 running at start of test self.stop_node(3) self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.sync_all(self.nodes[0:3]) def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size): """Return curr_balance after asserting the fee was in range""" fee = balance_with_fee - curr_balance assert_fee_amount(fee, tx_size, fee_per_byte * 1000) return curr_balance def get_vsize(self, txn): return self.nodes[0].decoderawtransaction(txn)['vsize'] def run_test(self): # Check that there's no UTXO on none of the nodes assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Mining blocks...") self.generate(self.nodes[0], 1, sync_fun=self.no_op) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 50) assert_equal(walletinfo['balance'], 0) self.sync_all(self.nodes[0:3]) self.generate(self.nodes[1], COINBASE_MATURITY + 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 0) # Check that only first and second nodes have UTXOs utxos = self.nodes[0].listunspent() assert_equal(len(utxos), 1) assert_equal(len(self.nodes[1].listunspent()), 1) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Test gettxout") confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"] # First, outputs that are unspent both in the chain and in the # mempool should appear with or without include_mempool txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True) assert_equal(txout['value'], 50) # Send 21 BTC from 0 to 2 using sendtoaddress call. self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11) mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) self.log.info("Test gettxout (second part)") # utxo spent in mempool should be visible if you exclude mempool # but invisible if you include mempool txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index) # by default include_mempool=True assert txout is None txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True) assert txout is None # new utxo from mempool should be invisible if you exclude mempool # but visible if you include mempool txout = self.nodes[0].gettxout(mempool_txid, 0, False) assert txout is None txout1 = self.nodes[0].gettxout(mempool_txid, 0, True) txout2 = self.nodes[0].gettxout(mempool_txid, 1, True) # note the mempool tx will have randomly assigned indices # but 10 will go to node2 and the rest will go to node0 balance = self.nodes[0].getbalance() assert_equal(set([txout1['value'], txout2['value']]), set([10, balance])) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 0) # Have node0 mine a block, thus it will collect its own fee. self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) # Exercise locking of unspent outputs unspent_0 = self.nodes[2].listunspent()[0] unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]} # Trying to unlock an output which isn't locked should error assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0]) # Locking an already-locked output should error self.nodes[2].lockunspent(False, [unspent_0]) assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0]) # Restarting the node should clear the lock self.restart_node(2) self.nodes[2].lockunspent(False, [unspent_0]) # Unloading and reloating the wallet should clear the lock assert_equal(self.nodes[0].listwallets(), [self.default_wallet_name]) self.nodes[2].unloadwallet(self.default_wallet_name) self.nodes[2].loadwallet(self.default_wallet_name) assert_equal(len(self.nodes[2].listlockunspent()), 0) # Locking non-persistently, then re-locking persistently, is allowed self.nodes[2].lockunspent(False, [unspent_0]) self.nodes[2].lockunspent(False, [unspent_0], True) # Restarting the node with the lock written to the wallet should keep the lock self.restart_node(2, ["-walletrejectlongchains=0"]) assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0]) # Unloading and reloading the wallet with a persistent lock should keep the lock self.nodes[2].unloadwallet(self.default_wallet_name) self.nodes[2].loadwallet(self.default_wallet_name) assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0]) # Locked outputs should not be used, even if they are the only available funds assert_raises_rpc_error(-6, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20) assert_equal([unspent_0], self.nodes[2].listlockunspent()) # Unlocking should remove the persistent lock self.nodes[2].lockunspent(True, [unspent_0]) self.restart_node(2) assert_equal(len(self.nodes[2].listlockunspent()), 0) # Reconnect node 2 after restarts self.connect_nodes(1, 2) self.connect_nodes(0, 2) assert_raises_rpc_error(-8, "txid must be of length 64 (not 34, for '0000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "ZZZ0000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds", self.nodes[2].lockunspent, False, [{"txid": unspent_0["txid"], "vout": 999}]) # The lock on a manually selected output is ignored unspent_0 = self.nodes[1].listunspent()[0] self.nodes[1].lockunspent(False, [unspent_0]) tx = self.nodes[1].createrawtransaction([unspent_0], { self.nodes[1].getnewaddress() : 1 }) self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True}) # fundrawtransaction can lock an input self.nodes[1].lockunspent(True, [unspent_0]) assert_equal(len(self.nodes[1].listlockunspent()), 0) tx = self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True})['hex'] assert_equal(len(self.nodes[1].listlockunspent()), 1) # Send transaction tx = self.nodes[1].signrawtransactionwithwallet(tx)["hex"] self.nodes[1].sendrawtransaction(tx) assert_equal(len(self.nodes[1].listlockunspent()), 0) # Have node1 generate 100 blocks (so node0 can recover the fee) self.generate(self.nodes[1], COINBASE_MATURITY, sync_fun=lambda: self.sync_all(self.nodes[0:3])) # node0 should end up with 100 btc in block rewards plus fees, but # minus the 21 plus fees sent to node2 assert_equal(self.nodes[0].getbalance(), 100 - 21) assert_equal(self.nodes[2].getbalance(), 21) # Node0 should have two unspent outputs. # Create a couple of transactions to send them to node2, submit them through # node1, and make sure both node0 and node2 pick them up properly: node0utxos = self.nodes[0].listunspent(1) assert_equal(len(node0utxos), 2) # create both transactions txns_to_send = [] for utxo in node0utxos: inputs = [] outputs = {} inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[self.nodes[2].getnewaddress()] = utxo["amount"] - 3 raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) txns_to_send.append(self.nodes[0].signrawtransactionwithwallet(raw_tx)) # Have node 1 (miner) send the transactions self.nodes[1].sendrawtransaction(hexstring=txns_to_send[0]["hex"], maxfeerate=0) self.nodes[1].sendrawtransaction(hexstring=txns_to_send[1]["hex"], maxfeerate=0) # Have node1 mine a block to confirm transactions: self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 94) # Verify that a spent output cannot be locked anymore spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]} assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0]) # Send 10 BTC normal address = self.nodes[0].getnewaddress("test") fee_per_byte = Decimal('0.001') / 1000 self.nodes[2].settxfee(fee_per_byte * 1000) txid = self.nodes[2].sendtoaddress(address, 10, "", "", False) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(self.nodes[0].getbalance(), Decimal('10')) # Send 10 BTC with subtract fee from amount txid = self.nodes[2].sendtoaddress(address, 10, "", "", True) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) self.log.info("Test sendmany") # Sendmany 10 BTC txid = self.nodes[2].sendmany('', {address: 10}, 0, "", []) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) node_0_bal += Decimal('10') node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(self.nodes[0].getbalance(), node_0_bal) # Sendmany 10 BTC with subtract fee from amount txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [address]) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) self.log.info("Test sendmany with fee_rate param (explicit fee rate in sat/vB)") fee_rate_sat_vb = 2 fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8 explicit_fee_rate_btc_kvb = Decimal(fee_rate_btc_kvb) / 1000 # Test passing fee_rate as a string txid = self.nodes[2].sendmany(amounts={address: 10}, fee_rate=str(fee_rate_sat_vb)) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) balance = self.nodes[2].getbalance() node_2_bal = self.check_fee_amount(balance, node_2_bal - Decimal('10'), explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(balance, node_2_bal) node_0_bal += Decimal('10') assert_equal(self.nodes[0].getbalance(), node_0_bal) # Test passing fee_rate as an integer amount = Decimal("0.0001") txid = self.nodes[2].sendmany(amounts={address: amount}, fee_rate=fee_rate_sat_vb) self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) balance = self.nodes[2].getbalance() node_2_bal = self.check_fee_amount(balance, node_2_bal - amount, explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(balance, node_2_bal) node_0_bal += amount assert_equal(self.nodes[0].getbalance(), node_0_bal) for key in ["totalFee", "feeRate"]: assert_raises_rpc_error(-8, "Unknown named parameter key", self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=1, key=1) # Test setting explicit fee rate just below the minimum. self.log.info("Test sendmany raises 'fee rate too low' if fee_rate of 0.99999999 is passed") assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)", self.nodes[2].sendmany, amounts={address: 10}, fee_rate=0.999) self.log.info("Test sendmany raises if an invalid fee_rate is passed") # Test fee_rate with zero values. msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)" for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]: assert_raises_rpc_error(-6, msg, self.nodes[2].sendmany, amounts={address: 1}, fee_rate=zero_value) msg = "Invalid amount" # Test fee_rate values that don't pass fixed-point parsing checks. for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]: assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 1.0}, fee_rate=invalid_value) # Test fee_rate values that cannot be represented in sat/vB. for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999, "0.0001", "0.00000001", "0.00099999", "31.99999999"]: assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value) # Test fee_rate out of range (negative number). assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=-1) # Test type error. for invalid_value in [True, {"foo": "bar"}]: assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value) self.log.info("Test sendmany raises if an invalid conf_target or estimate_mode is passed") for target, mode in product([-1, 0, 1009], ["economical", "conservative"]): assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008", # max value of 1008 per src/policy/fees.h self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode) for target, mode in product([-1, 0], ["btc/kb", "sat/b"]): assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"', self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode) self.start_node(3, self.nodes[3].extra_args) self.connect_nodes(0, 3) self.sync_all() # check if we can list zero value tx as available coins # 1. create raw_tx # 2. hex-changed one output to 0.0 # 3. sign and send # 4. check if recipient (node0) can list the zero value tx usp = self.nodes[1].listunspent(query_options={'minimumAmount': '49.998'})[0] inputs = [{"txid": usp['txid'], "vout": usp['vout']}] outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11} raw_tx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") # replace 11.11 with 0.0 (int32) signed_raw_tx = self.nodes[1].signrawtransactionwithwallet(raw_tx) decoded_raw_tx = self.nodes[1].decoderawtransaction(signed_raw_tx['hex']) zero_value_txid = decoded_raw_tx['txid'] self.nodes[1].sendrawtransaction(signed_raw_tx['hex']) self.sync_all() self.generate(self.nodes[1], 1) # mine a block unspent_txs = self.nodes[0].listunspent() # zero value tx must be in listunspents output found = False for uTx in unspent_txs: if uTx['txid'] == zero_value_txid: found = True assert_equal(uTx['amount'], Decimal('0')) assert found self.log.info("Test -walletbroadcast") self.stop_nodes() self.start_node(0, ["-walletbroadcast=0"]) self.start_node(1, ["-walletbroadcast=0"]) self.start_node(2, ["-walletbroadcast=0"]) self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.sync_all(self.nodes[0:3]) txid_not_broadcast = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) # mine a block, tx should not be in there assert_equal(self.nodes[2].getbalance(), node_2_bal) # should not be changed because tx was not broadcasted # now broadcast from another node, mine a block, sync, and check the balance self.nodes[1].sendrawtransaction(tx_obj_not_broadcast['hex']) self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) node_2_bal += 2 tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) assert_equal(self.nodes[2].getbalance(), node_2_bal) # create another tx self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) # restart the nodes with -walletbroadcast=1 self.stop_nodes() self.start_node(0) self.start_node(1) self.start_node(2) self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.sync_blocks(self.nodes[0:3]) self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_blocks(self.nodes[0:3])) node_2_bal += 2 # tx should be added to balance because after restarting the nodes tx should be broadcast assert_equal(self.nodes[2].getbalance(), node_2_bal) # send a tx with value in a string (PR#6380 +) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-2')) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # check if JSON parser can handle scientific notation in strings txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # General checks for errors from incorrect inputs # This will raise an exception because the amount is negative assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "-1") # This will raise an exception because the amount type is wrong assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4") # This will raise an exception since generate does not accept a string assert_raises_rpc_error(-1, "not of expected type number", self.generate, self.nodes[0], "2") if not self.options.descriptors: # This will raise an exception for the invalid private key format assert_raises_rpc_error(-5, "Invalid private key encoding", self.nodes[0].importprivkey, "invalid") # This will raise an exception for importing an address with the PS2H flag temp_address = self.nodes[1].getnewaddress("", "p2sh-segwit") assert_raises_rpc_error(-5, "Cannot use the p2sh flag with an address - use a script instead", self.nodes[0].importaddress, temp_address, "label", False, True) # This will raise an exception for attempting to dump the private key of an address you do not own assert_raises_rpc_error(-3, "Address does not refer to a key", self.nodes[0].dumpprivkey, temp_address) # This will raise an exception for attempting to get the private key of an invalid Bitcoin address assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].dumpprivkey, "invalid") # This will raise an exception for attempting to set a label for an invalid Bitcoin address assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].setlabel, "invalid address", "label") # This will raise an exception for importing an invalid address assert_raises_rpc_error(-5, "Invalid Bitcoin address or script", self.nodes[0].importaddress, "invalid") # This will raise an exception for attempting to import a pubkey that isn't in hex assert_raises_rpc_error(-5, "Pubkey must be a hex string", self.nodes[0].importpubkey, "not hex") # This will raise an exception for importing an invalid pubkey assert_raises_rpc_error(-5, "Pubkey is not a valid public key", self.nodes[0].importpubkey, "5361746f736869204e616b616d6f746f") # Bech32m addresses cannot be imported into a legacy wallet assert_raises_rpc_error(-5, "Bech32m addresses cannot be imported into legacy wallets", self.nodes[0].importaddress, "bcrt1p0xlxvlhemja6c4dqv22uapctqupfhlxm9h8z3k2e72q4k9hcz7vqc8gma6") # Import address and private key to check correct behavior of spendable unspents # 1. Send some coins to generate new UTXO address_to_import = self.nodes[2].getnewaddress() txid = self.nodes[0].sendtoaddress(address_to_import, 1) self.sync_mempools(self.nodes[0:3]) vout = find_vout_for_address(self.nodes[2], txid, address_to_import) self.nodes[2].lockunspent(False, [{"txid": txid, "vout": vout}]) self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) self.log.info("Test sendtoaddress with fee_rate param (explicit fee rate in sat/vB)") prebalance = self.nodes[2].getbalance() assert prebalance > 2 address = self.nodes[1].getnewaddress() amount = 3 fee_rate_sat_vb = 2 fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8 # Test passing fee_rate as an integer txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=fee_rate_sat_vb) tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex']) self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) postbalance = self.nodes[2].getbalance() fee = prebalance - postbalance - Decimal(amount) assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb)) prebalance = self.nodes[2].getbalance() amount = Decimal("0.001") fee_rate_sat_vb = 1.23 fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8 # Test passing fee_rate as a string txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=str(fee_rate_sat_vb)) tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex']) self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3])) postbalance = self.nodes[2].getbalance() fee = prebalance - postbalance - amount assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb)) for key in ["totalFee", "feeRate"]: assert_raises_rpc_error(-8, "Unknown named parameter key", self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=1, key=1) # Test setting explicit fee rate just below the minimum. self.log.info("Test sendtoaddress raises 'fee rate too low' if fee_rate of 0.99999999 is passed") assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)", self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=0.999) self.log.info("Test sendtoaddress raises if an invalid fee_rate is passed") # Test fee_rate with zero values. msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)" for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]: assert_raises_rpc_error(-6, msg, self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=zero_value) msg = "Invalid amount" # Test fee_rate values that don't pass fixed-point parsing checks. for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]: assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value) # Test fee_rate values that cannot be represented in sat/vB. for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999, "0.0001", "0.00000001", "0.00099999", "31.99999999"]: assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=10, fee_rate=invalid_value) # Test fee_rate out of range (negative number). assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=-1) # Test type error. for invalid_value in [True, {"foo": "bar"}]: assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value) self.log.info("Test sendtoaddress raises if an invalid conf_target or estimate_mode is passed") for target, mode in product([-1, 0, 1009], ["economical", "conservative"]): assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008", # max value of 1008 per src/policy/fees.h self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode) for target, mode in product([-1, 0], ["btc/kb", "sat/b"]): assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"', self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode) # 2. Import address from node2 to node1 self.nodes[1].importaddress(address_to_import) # 3. Validate that the imported address is watch-only on node1 assert self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"] # 4. Check that the unspents after import are not spendable assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": False}) # 5. Import private key of the previously imported address on node1 priv_key = self.nodes[2].dumpprivkey(address_to_import) self.nodes[1].importprivkey(priv_key) # 6. Check that the unspents are now spendable on node1 assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": True}) # Mine a block from node0 to an address from node1 coinbase_addr = self.nodes[1].getnewaddress() block_hash = self.generatetoaddress(self.nodes[0], 1, coinbase_addr, sync_fun=lambda: self.sync_all(self.nodes[0:3]))[0] coinbase_txid = self.nodes[0].getblock(block_hash)['tx'][0] # Check that the txid and balance is found by node1 self.nodes[1].gettransaction(coinbase_txid) # check if wallet or blockchain maintenance changes the balance self.sync_all(self.nodes[0:3]) blocks = self.generate(self.nodes[0], 2, sync_fun=lambda: self.sync_all(self.nodes[0:3])) balance_nodes = [self.nodes[i].getbalance() for i in range(3)] block_count = self.nodes[0].getblockcount() # Check modes: # - True: unicode escaped as \u.... # - False: unicode directly as UTF-8 for mode in [True, False]: self.nodes[0].rpc.ensure_ascii = mode # unicode check: Basic Multilingual Plane, Supplementary Plane respectively for label in [u'рыба', u'𝅘𝅥𝅯']: addr = self.nodes[0].getnewaddress() self.nodes[0].setlabel(addr, label) test_address(self.nodes[0], addr, labels=[label]) assert label in self.nodes[0].listlabels() self.nodes[0].rpc.ensure_ascii = True # restore to default # -reindex tests chainlimit = 6 self.log.info("Test -reindex") self.stop_nodes() # set lower ancestor limit for later self.start_node(0, ['-reindex', "-walletrejectlongchains=0", "-limitancestorcount=" + str(chainlimit)]) self.start_node(1, ['-reindex', "-limitancestorcount=" + str(chainlimit)]) self.start_node(2, ['-reindex', "-limitancestorcount=" + str(chainlimit)]) # reindex will leave rpc warm up "early"; Wait for it to finish self.wait_until(lambda: [block_count] * 3 == [self.nodes[i].getblockcount() for i in range(3)]) assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)]) # Exercise listsinceblock with the last two blocks coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0]) assert_equal(coinbase_tx_1["lastblock"], blocks[1]) assert_equal(len(coinbase_tx_1["transactions"]), 1) assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1]) assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0) # ==Check that wallet prefers to use coins that don't exceed mempool limits ===== # Get all non-zero utxos together and split into two chains chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()] self.nodes[0].sendall(recipients=chain_addrs) self.generate(self.nodes[0], 1, sync_fun=self.no_op) # Make a long chain of unconfirmed payments without hitting mempool limit # Each tx we make leaves only one output of change on a chain 1 longer # Since the amount to send is always much less than the outputs, we only ever need one output # So we should be able to generate exactly chainlimit txs for each original output sending_addr = self.nodes[1].getnewaddress() txid_list = [] for _ in range(chainlimit * 2): txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))) assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2) assert_equal(len(txid_list), chainlimit * 2) # Without walletrejectlongchains, we will still generate a txid # The tx will be stored in the wallet but not accepted to the mempool extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')) assert extra_txid not in self.nodes[0].getrawmempool() assert extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()] self.nodes[0].abandontransaction(extra_txid) total_txs = len(self.nodes[0].listtransactions("*", 99999)) # Try with walletrejectlongchains # Double chain limit but require combining inputs, so we pass AttemptSelection self.stop_node(0) extra_args = ["-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)] self.start_node(0, extra_args=extra_args) # wait until the wallet has submitted all transactions to the mempool self.wait_until(lambda: len(self.nodes[0].getrawmempool()) == chainlimit * 2) # Prevent potential race condition when calling wallet RPCs right after restart self.nodes[0].syncwithvalidationinterfacequeue() node0_balance = self.nodes[0].getbalance() # With walletrejectlongchains we will not create the tx and store it in our wallet. assert_raises_rpc_error(-6, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01')) # Verify nothing new in wallet assert_equal(total_txs, len(self.nodes[0].listtransactions("*", 99999))) # Test getaddressinfo on external address. Note that these addresses are taken from disablewallet.py assert_raises_rpc_error(-5, "Invalid prefix for Base58-encoded address", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy") address_info = self.nodes[0].getaddressinfo("mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info['address'], "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac") assert not address_info["ismine"] assert not address_info["iswatchonly"] assert not address_info["isscript"] assert not address_info["ischange"] # Test getaddressinfo 'ischange' field on change address. self.generate(self.nodes[0], 1, sync_fun=self.no_op) destination = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(destination, 0.123) tx = self.nodes[0].gettransaction(txid=txid, verbose=True)['decoded'] output_addresses = [vout['scriptPubKey']['address'] for vout in tx["vout"]] assert len(output_addresses) > 1 for address in output_addresses: ischange = self.nodes[0].getaddressinfo(address)['ischange'] assert_equal(ischange, address != destination) if ischange: change = address self.nodes[0].setlabel(change, 'foobar') assert_equal(self.nodes[0].getaddressinfo(change)['ischange'], False) # Test gettransaction response with different arguments. self.log.info("Testing gettransaction response with different arguments...") self.nodes[0].setlabel(change, 'baz') baz = self.nodes[0].listtransactions(label="baz", count=1)[0] expected_receive_vout = {"label": "baz", "address": baz["address"], "amount": baz["amount"], "category": baz["category"], "vout": baz["vout"]} expected_fields = frozenset({'amount', 'bip125-replaceable', 'confirmations', 'details', 'fee', 'hex', 'time', 'timereceived', 'trusted', 'txid', 'wtxid', 'walletconflicts'}) verbose_field = "decoded" expected_verbose_fields = expected_fields | {verbose_field} self.log.debug("Testing gettransaction response without verbose") tx = self.nodes[0].gettransaction(txid=txid) assert_equal(set([*tx]), expected_fields) assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout) self.log.debug("Testing gettransaction response with verbose set to False") tx = self.nodes[0].gettransaction(txid=txid, verbose=False) assert_equal(set([*tx]), expected_fields) assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout) self.log.debug("Testing gettransaction response with verbose set to True") tx = self.nodes[0].gettransaction(txid=txid, verbose=True) assert_equal(set([*tx]), expected_verbose_fields) assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout) assert_equal(tx[verbose_field], self.nodes[0].decoderawtransaction(tx["hex"])) self.log.info("Test send* RPCs with verbose=True") address = self.nodes[0].getnewaddress("test") txid_feeReason_one = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=True) assert_equal(txid_feeReason_one["fee_reason"], "Fallback fee") txid_feeReason_two = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=True) assert_equal(txid_feeReason_two["fee_reason"], "Fallback fee") self.log.info("Test send* RPCs with verbose=False") txid_feeReason_three = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=False) assert_equal(self.nodes[2].gettransaction(txid_feeReason_three)['txid'], txid_feeReason_three) txid_feeReason_four = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=False) assert_equal(self.nodes[2].gettransaction(txid_feeReason_four)['txid'], txid_feeReason_four) if self.options.descriptors: self.log.info("Testing 'listunspent' outputs the parent descriptor(s) of coins") # Create two multisig descriptors, and send a UTxO each. multi_a = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YBNjUo96Jxd1u4XKWgnoc7LsA1jz3Yc2NiDbhtfBhaBtemB73n9V5vtJHwU6FVXwggTbeoJWQ1rzdz8ysDuQkpnaHyvnvzR/*,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*))") multi_b = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*,tpubD6NzVbkrYhZ4Y2RLiuEzNQkntjmsLpPYDm3LTRBYynUQtDtpzeUKAcb9sYthSFL3YR74cdFgF5mW8yKxv2W2CWuZDFR2dUpE5PF9kbrVXNZ/*))") addr_a = self.nodes[0].deriveaddresses(multi_a, 0)[0] addr_b = self.nodes[0].deriveaddresses(multi_b, 0)[0] txid_a = self.nodes[0].sendtoaddress(addr_a, 0.01) txid_b = self.nodes[0].sendtoaddress(addr_b, 0.01) self.generate(self.nodes[0], 1, sync_fun=self.no_op) # Now import the descriptors, make sure we can identify on which descriptor each coin was received. self.nodes[0].createwallet(wallet_name="wo", descriptors=True, disable_private_keys=True) wo_wallet = self.nodes[0].get_wallet_rpc("wo") wo_wallet.importdescriptors([ { "desc": multi_a, "active": False, "timestamp": "now", }, { "desc": multi_b, "active": False, "timestamp": "now", }, ]) coins = wo_wallet.listunspent(minconf=0) assert_equal(len(coins), 2) coin_a = next(c for c in coins if c["txid"] == txid_a) assert_equal(coin_a["parent_descs"][0], multi_a) coin_b = next(c for c in coins if c["txid"] == txid_b) assert_equal(coin_b["parent_descs"][0], multi_b) self.nodes[0].unloadwallet("wo") if __name__ == '__main__': WalletTest().main()