#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class WalletTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True self.extra_args = [['-usehd={:d}'.format(i%2==0)] for i in range(4)] def setup_network(self): self.add_nodes(4, self.extra_args) self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.sync_all([self.nodes[0:3]]) def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size): """Return curr_balance after asserting the fee was in range""" fee = balance_with_fee - curr_balance assert_fee_amount(fee, tx_size, fee_per_byte * 1000) return curr_balance def run_test(self): # Check that there's no UTXO on none of the nodes assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Mining blocks...") self.nodes[0].generate(1) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 50) assert_equal(walletinfo['balance'], 0) self.sync_all([self.nodes[0:3]]) self.nodes[1].generate(101) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 0) # Check that only first and second nodes have UTXOs utxos = self.nodes[0].listunspent() assert_equal(len(utxos), 1) assert_equal(len(self.nodes[1].listunspent()), 1) assert_equal(len(self.nodes[2].listunspent()), 0) # Send 21 BTC from 0 to 2 using sendtoaddress call. # Locked memory should use at least 32 bytes to sign each transaction self.log.info("test getmemoryinfo") memory_before = self.nodes[0].getmemoryinfo() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11) mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) memory_after = self.nodes[0].getmemoryinfo() assert(memory_before['locked']['used'] + 64 <= memory_after['locked']['used']) self.log.info("test gettxout") # utxo spent in mempool should be visible if you exclude mempool # but invisible if you include mempool confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"] txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True) assert txout is None # new utxo from mempool should be invisible if you exclude mempool # but visible if you include mempool txout = self.nodes[0].gettxout(mempool_txid, 0, False) assert txout is None txout1 = self.nodes[0].gettxout(mempool_txid, 0, True) txout2 = self.nodes[0].gettxout(mempool_txid, 1, True) # note the mempool tx will have randomly assigned indices # but 10 will go to node2 and the rest will go to node0 balance = self.nodes[0].getbalance() assert_equal(set([txout1['value'], txout2['value']]), set([10, balance])) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 0) # Have node0 mine a block, thus it will collect its own fee. self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # Exercise locking of unspent outputs unspent_0 = self.nodes[2].listunspent()[0] unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]} self.nodes[2].lockunspent(False, [unspent_0]) assert_raises_jsonrpc(-4, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20) assert_equal([unspent_0], self.nodes[2].listlockunspent()) self.nodes[2].lockunspent(True, [unspent_0]) assert_equal(len(self.nodes[2].listlockunspent()), 0) # Have node1 generate 100 blocks (so node0 can recover the fee) self.nodes[1].generate(100) self.sync_all([self.nodes[0:3]]) # node0 should end up with 100 btc in block rewards plus fees, but # minus the 21 plus fees sent to node2 assert_equal(self.nodes[0].getbalance(), 100-21) assert_equal(self.nodes[2].getbalance(), 21) # Node0 should have two unspent outputs. # Create a couple of transactions to send them to node2, submit them through # node1, and make sure both node0 and node2 pick them up properly: node0utxos = self.nodes[0].listunspent(1) assert_equal(len(node0utxos), 2) # create both transactions txns_to_send = [] for utxo in node0utxos: inputs = [] outputs = {} inputs.append({ "txid" : utxo["txid"], "vout" : utxo["vout"]}) outputs[self.nodes[2].getnewaddress("from1")] = utxo["amount"] - 3 raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) txns_to_send.append(self.nodes[0].signrawtransaction(raw_tx)) # Have node 1 (miner) send the transactions self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True) self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True) # Have node1 mine a block to confirm transactions: self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 94) assert_equal(self.nodes[2].getbalance("from1"), 94-21) # Send 10 BTC normal address = self.nodes[0].getnewaddress("test") fee_per_byte = Decimal('0.001') / 1000 self.nodes[2].settxfee(fee_per_byte * 1000) txid = self.nodes[2].sendtoaddress(address, 10, "", "", False) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, count_bytes(self.nodes[2].getrawtransaction(txid))) assert_equal(self.nodes[0].getbalance(), Decimal('10')) # Send 10 BTC with subtract fee from amount txid = self.nodes[2].sendtoaddress(address, 10, "", "", True) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, count_bytes(self.nodes[2].getrawtransaction(txid))) # Sendmany 10 BTC txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", []) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_0_bal += Decimal('10') node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, count_bytes(self.nodes[2].getrawtransaction(txid))) assert_equal(self.nodes[0].getbalance(), node_0_bal) # Sendmany 10 BTC with subtract fee from amount txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", [address]) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, count_bytes(self.nodes[2].getrawtransaction(txid))) # Test ResendWalletTransactions: # Create a couple of transactions, then start up a fourth # node (nodes[3]) and ask nodes[0] to rebroadcast. # EXPECT: nodes[3] should have those transactions in its mempool. txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) txid2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1) sync_mempools(self.nodes[0:2]) self.start_node(3) connect_nodes_bi(self.nodes, 0, 3) sync_blocks(self.nodes) relayed = self.nodes[0].resendwallettransactions() assert_equal(set(relayed), {txid1, txid2}) sync_mempools(self.nodes) assert(txid1 in self.nodes[3].getrawmempool()) # Exercise balance rpcs assert_equal(self.nodes[0].getwalletinfo()["unconfirmed_balance"], 1) assert_equal(self.nodes[0].getunconfirmedbalance(), 1) #check if we can list zero value tx as available coins #1. create rawtx #2. hex-changed one output to 0.0 #3. sign and send #4. check if recipient (node0) can list the zero value tx usp = self.nodes[1].listunspent() inputs = [{"txid":usp[0]['txid'], "vout":usp[0]['vout']}] outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11} rawTx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") #replace 11.11 with 0.0 (int32) decRawTx = self.nodes[1].decoderawtransaction(rawTx) signedRawTx = self.nodes[1].signrawtransaction(rawTx) decRawTx = self.nodes[1].decoderawtransaction(signedRawTx['hex']) zeroValueTxid= decRawTx['txid'] sendResp = self.nodes[1].sendrawtransaction(signedRawTx['hex']) self.sync_all() self.nodes[1].generate(1) #mine a block self.sync_all() unspentTxs = self.nodes[0].listunspent() #zero value tx must be in listunspents output found = False for uTx in unspentTxs: if uTx['txid'] == zeroValueTxid: found = True assert_equal(uTx['amount'], Decimal('0')) assert(found) #do some -walletbroadcast tests self.stop_nodes() self.start_node(0, ["-walletbroadcast=0"]) self.start_node(1, ["-walletbroadcast=0"]) self.start_node(2, ["-walletbroadcast=0"]) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.sync_all([self.nodes[0:3]]) txIdNotBroadcasted = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted) self.nodes[1].generate(1) #mine a block, tx should not be in there self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[2].getbalance(), node_2_bal) #should not be changed because tx was not broadcasted #now broadcast from another node, mine a block, sync, and check the balance self.nodes[1].sendrawtransaction(txObjNotBroadcasted['hex']) self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal += 2 txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted) assert_equal(self.nodes[2].getbalance(), node_2_bal) #create another tx txIdNotBroadcasted = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) #restart the nodes with -walletbroadcast=1 self.stop_nodes() self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) sync_blocks(self.nodes[0:3]) self.nodes[0].generate(1) sync_blocks(self.nodes[0:3]) node_2_bal += 2 #tx should be added to balance because after restarting the nodes tx should be broadcastet assert_equal(self.nodes[2].getbalance(), node_2_bal) #send a tx with value in a string (PR#6380 +) txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-2')) txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-0.0001')) #check if JSON parser can handle scientific notation in strings txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-0.0001')) # This will raise an exception because the amount type is wrong assert_raises_jsonrpc(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4") # This will raise an exception since generate does not accept a string assert_raises_jsonrpc(-1, "not an integer", self.nodes[0].generate, "2") # Import address and private key to check correct behavior of spendable unspents # 1. Send some coins to generate new UTXO address_to_import = self.nodes[2].getnewaddress() txid = self.nodes[0].sendtoaddress(address_to_import, 1) self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # 2. Import address from node2 to node1 self.nodes[1].importaddress(address_to_import) # 3. Validate that the imported address is watch-only on node1 assert(self.nodes[1].validateaddress(address_to_import)["iswatchonly"]) # 4. Check that the unspents after import are not spendable assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": False}) # 5. Import private key of the previously imported address on node1 priv_key = self.nodes[2].dumpprivkey(address_to_import) self.nodes[1].importprivkey(priv_key) # 6. Check that the unspents are now spendable on node1 assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": True}) # Mine a block from node0 to an address from node1 cbAddr = self.nodes[1].getnewaddress() blkHash = self.nodes[0].generatetoaddress(1, cbAddr)[0] cbTxId = self.nodes[0].getblock(blkHash)['tx'][0] self.sync_all([self.nodes[0:3]]) # Check that the txid and balance is found by node1 self.nodes[1].gettransaction(cbTxId) # check if wallet or blockchain maintenance changes the balance self.sync_all([self.nodes[0:3]]) blocks = self.nodes[0].generate(2) self.sync_all([self.nodes[0:3]]) balance_nodes = [self.nodes[i].getbalance() for i in range(3)] block_count = self.nodes[0].getblockcount() # Check modes: # - True: unicode escaped as \u.... # - False: unicode directly as UTF-8 for mode in [True, False]: self.nodes[0].ensure_ascii = mode # unicode check: Basic Multilingual Plane, Supplementary Plane respectively for s in [u'рыба', u'𝅘𝅥𝅯']: addr = self.nodes[0].getaccountaddress(s) label = self.nodes[0].getaccount(addr) assert_equal(label, s) assert(s in self.nodes[0].listaccounts().keys()) self.nodes[0].ensure_ascii = True # restore to default # maintenance tests maintenance = [ '-rescan', '-reindex', '-zapwallettxes=1', '-zapwallettxes=2', # disabled until issue is fixed: https://github.com/bitcoin/bitcoin/issues/7463 # '-salvagewallet', ] chainlimit = 6 for m in maintenance: self.log.info("check " + m) self.stop_nodes() # set lower ancestor limit for later self.start_node(0, [m, "-limitancestorcount="+str(chainlimit)]) self.start_node(1, [m, "-limitancestorcount="+str(chainlimit)]) self.start_node(2, [m, "-limitancestorcount="+str(chainlimit)]) while m == '-reindex' and [block_count] * 3 != [self.nodes[i].getblockcount() for i in range(3)]: # reindex will leave rpc warm up "early"; Wait for it to finish time.sleep(0.1) assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)]) # Exercise listsinceblock with the last two blocks coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0]) assert_equal(coinbase_tx_1["lastblock"], blocks[1]) assert_equal(len(coinbase_tx_1["transactions"]), 1) assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1]) assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0) # ==Check that wallet prefers to use coins that don't exceed mempool limits ===== # Get all non-zero utxos together chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()] singletxid = self.nodes[0].sendtoaddress(chain_addrs[0], self.nodes[0].getbalance(), "", "", True) self.nodes[0].generate(1) node0_balance = self.nodes[0].getbalance() # Split into two chains rawtx = self.nodes[0].createrawtransaction([{"txid":singletxid, "vout":0}], {chain_addrs[0]:node0_balance/2-Decimal('0.01'), chain_addrs[1]:node0_balance/2-Decimal('0.01')}) signedtx = self.nodes[0].signrawtransaction(rawtx) singletxid = self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) # Make a long chain of unconfirmed payments without hitting mempool limit # Each tx we make leaves only one output of change on a chain 1 longer # Since the amount to send is always much less than the outputs, we only ever need one output # So we should be able to generate exactly chainlimit txs for each original output sending_addr = self.nodes[1].getnewaddress() txid_list = [] for i in range(chainlimit*2): txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))) assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit*2) assert_equal(len(txid_list), chainlimit*2) # Without walletrejectlongchains, we will still generate a txid # The tx will be stored in the wallet but not accepted to the mempool extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')) assert(extra_txid not in self.nodes[0].getrawmempool()) assert(extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()]) self.nodes[0].abandontransaction(extra_txid) total_txs = len(self.nodes[0].listtransactions("*",99999)) # Try with walletrejectlongchains # Double chain limit but require combining inputs, so we pass SelectCoinsMinConf self.stop_node(0) self.start_node(0, extra_args=["-walletrejectlongchains", "-limitancestorcount="+str(2*chainlimit)]) # wait for loadmempool timeout = 10 while (timeout > 0 and len(self.nodes[0].getrawmempool()) < chainlimit*2): time.sleep(0.5) timeout -= 0.5 assert_equal(len(self.nodes[0].getrawmempool()), chainlimit*2) node0_balance = self.nodes[0].getbalance() # With walletrejectlongchains we will not create the tx and store it in our wallet. assert_raises_jsonrpc(-4, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01')) # Verify nothing new in wallet assert_equal(total_txs, len(self.nodes[0].listtransactions("*",99999))) if __name__ == '__main__': WalletTest().main()