#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin test framework primitive and message structures CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization. Classes use __slots__ to ensure extraneous attributes aren't accidentally added by tests, compromising their intended effect. """ from base64 import b32decode, b32encode import copy import hashlib from io import BytesIO import math import random import socket import time import unittest from test_framework.crypto.siphash import siphash256 from test_framework.util import assert_equal MAX_LOCATOR_SZ = 101 MAX_BLOCK_WEIGHT = 4000000 MAX_BLOOM_FILTER_SIZE = 36000 MAX_BLOOM_HASH_FUNCS = 50 COIN = 100000000 # 1 btc in satoshis MAX_MONEY = 21000000 * COIN MAX_BIP125_RBF_SEQUENCE = 0xfffffffd # Sequence number that is rbf-opt-in (BIP 125) and csv-opt-out (BIP 68) SEQUENCE_FINAL = 0xffffffff # Sequence number that disables nLockTime if set for every input of a tx MAX_PROTOCOL_MESSAGE_LENGTH = 4000000 # Maximum length of incoming protocol messages MAX_HEADERS_RESULTS = 2000 # Number of headers sent in one getheaders result MAX_INV_SIZE = 50000 # Maximum number of entries in an 'inv' protocol message NODE_NONE = 0 NODE_NETWORK = (1 << 0) NODE_BLOOM = (1 << 2) NODE_WITNESS = (1 << 3) NODE_COMPACT_FILTERS = (1 << 6) NODE_NETWORK_LIMITED = (1 << 10) NODE_P2P_V2 = (1 << 11) MSG_TX = 1 MSG_BLOCK = 2 MSG_FILTERED_BLOCK = 3 MSG_CMPCT_BLOCK = 4 MSG_WTX = 5 MSG_WITNESS_FLAG = 1 << 30 MSG_TYPE_MASK = 0xffffffff >> 2 MSG_WITNESS_TX = MSG_TX | MSG_WITNESS_FLAG FILTER_TYPE_BASIC = 0 WITNESS_SCALE_FACTOR = 4 DEFAULT_ANCESTOR_LIMIT = 25 # default max number of in-mempool ancestors DEFAULT_DESCENDANT_LIMIT = 25 # default max number of in-mempool descendants # Default setting for -datacarriersize. 80 bytes of data, +1 for OP_RETURN, +2 for the pushdata opcodes. MAX_OP_RETURN_RELAY = 83 DEFAULT_MEMPOOL_EXPIRY_HOURS = 336 # hours MAGIC_BYTES = { "mainnet": b"\xf9\xbe\xb4\xd9", # mainnet "testnet3": b"\x0b\x11\x09\x07", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest "signet": b"\x0a\x03\xcf\x40", # signet } def sha256(s): return hashlib.sha256(s).digest() def sha3(s): return hashlib.sha3_256(s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = l.to_bytes(1, "little") elif l < 0x10000: r = (253).to_bytes(1, "little") + l.to_bytes(2, "little") elif l < 0x100000000: r = (254).to_bytes(1, "little") + l.to_bytes(4, "little") else: r = (255).to_bytes(1, "little") + l.to_bytes(8, "little") return r def deser_compact_size(f): nit = int.from_bytes(f.read(1), "little") if nit == 253: nit = int.from_bytes(f.read(2), "little") elif nit == 254: nit = int.from_bytes(f.read(4), "little") elif nit == 255: nit = int.from_bytes(f.read(8), "little") return nit def deser_string(f): nit = deser_compact_size(f) return f.read(nit) def ser_string(s): return ser_compact_size(len(s)) + s def deser_uint256(f): return int.from_bytes(f.read(32), 'little') def ser_uint256(u): return u.to_bytes(32, 'little') def uint256_from_str(s): return int.from_bytes(s[:32], 'little') def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v # deser_function_name: Allow for an alternate deserialization function on the # entries in the vector. def deser_vector(f, c, deser_function_name=None): nit = deser_compact_size(f) r = [] for _ in range(nit): t = c() if deser_function_name: getattr(t, deser_function_name)(f) else: t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector (we use this for serializing the vector of transactions # for a witness block). def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for _ in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for _ in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r def from_hex(obj, hex_string): """Deserialize from a hex string representation (e.g. from RPC) Note that there is no complementary helper like e.g. `to_hex` for the inverse operation. To serialize a message object to a hex string, simply use obj.serialize().hex()""" obj.deserialize(BytesIO(bytes.fromhex(hex_string))) return obj def tx_from_hex(hex_string): """Deserialize from hex string to a transaction object""" return from_hex(CTransaction(), hex_string) # like from_hex, but without the hex part def from_binary(cls, stream): """deserialize a binary stream (or bytes object) into an object""" # handle bytes object by turning it into a stream was_bytes = isinstance(stream, bytes) if was_bytes: stream = BytesIO(stream) obj = cls() obj.deserialize(stream) if was_bytes: assert len(stream.read()) == 0 return obj # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress: __slots__ = ("net", "ip", "nServices", "port", "time") # see https://github.com/bitcoin/bips/blob/master/bip-0155.mediawiki NET_IPV4 = 1 NET_IPV6 = 2 NET_TORV3 = 4 NET_I2P = 5 NET_CJDNS = 6 ADDRV2_NET_NAME = { NET_IPV4: "IPv4", NET_IPV6: "IPv6", NET_TORV3: "TorV3", NET_I2P: "I2P", NET_CJDNS: "CJDNS" } ADDRV2_ADDRESS_LENGTH = { NET_IPV4: 4, NET_IPV6: 16, NET_TORV3: 32, NET_I2P: 32, NET_CJDNS: 16 } I2P_PAD = "====" def __init__(self): self.time = 0 self.nServices = 1 self.net = self.NET_IPV4 self.ip = "0.0.0.0" self.port = 0 def __eq__(self, other): return self.net == other.net and self.ip == other.ip and self.nServices == other.nServices and self.port == other.port and self.time == other.time def deserialize(self, f, *, with_time=True): """Deserialize from addrv1 format (pre-BIP155)""" if with_time: # VERSION messages serialize CAddress objects without time self.time = int.from_bytes(f.read(4), "little") self.nServices = int.from_bytes(f.read(8), "little") # We only support IPv4 which means skip 12 bytes and read the next 4 as IPv4 address. f.read(12) self.net = self.NET_IPV4 self.ip = socket.inet_ntoa(f.read(4)) self.port = int.from_bytes(f.read(2), "big") def serialize(self, *, with_time=True): """Serialize in addrv1 format (pre-BIP155)""" assert self.net == self.NET_IPV4 r = b"" if with_time: # VERSION messages serialize CAddress objects without time r += self.time.to_bytes(4, "little") r += self.nServices.to_bytes(8, "little") r += b"\x00" * 10 + b"\xff" * 2 r += socket.inet_aton(self.ip) r += self.port.to_bytes(2, "big") return r def deserialize_v2(self, f): """Deserialize from addrv2 format (BIP155)""" self.time = int.from_bytes(f.read(4), "little") self.nServices = deser_compact_size(f) self.net = int.from_bytes(f.read(1), "little") assert self.net in self.ADDRV2_NET_NAME address_length = deser_compact_size(f) assert address_length == self.ADDRV2_ADDRESS_LENGTH[self.net] addr_bytes = f.read(address_length) if self.net == self.NET_IPV4: self.ip = socket.inet_ntoa(addr_bytes) elif self.net == self.NET_IPV6: self.ip = socket.inet_ntop(socket.AF_INET6, addr_bytes) elif self.net == self.NET_TORV3: prefix = b".onion checksum" version = bytes([3]) checksum = sha3(prefix + addr_bytes + version)[:2] self.ip = b32encode(addr_bytes + checksum + version).decode("ascii").lower() + ".onion" elif self.net == self.NET_I2P: self.ip = b32encode(addr_bytes)[0:-len(self.I2P_PAD)].decode("ascii").lower() + ".b32.i2p" elif self.net == self.NET_CJDNS: self.ip = socket.inet_ntop(socket.AF_INET6, addr_bytes) else: raise Exception(f"Address type not supported") self.port = int.from_bytes(f.read(2), "big") def serialize_v2(self): """Serialize in addrv2 format (BIP155)""" assert self.net in self.ADDRV2_NET_NAME r = b"" r += self.time.to_bytes(4, "little") r += ser_compact_size(self.nServices) r += self.net.to_bytes(1, "little") r += ser_compact_size(self.ADDRV2_ADDRESS_LENGTH[self.net]) if self.net == self.NET_IPV4: r += socket.inet_aton(self.ip) elif self.net == self.NET_IPV6: r += socket.inet_pton(socket.AF_INET6, self.ip) elif self.net == self.NET_TORV3: sfx = ".onion" assert self.ip.endswith(sfx) r += b32decode(self.ip[0:-len(sfx)], True)[0:32] elif self.net == self.NET_I2P: sfx = ".b32.i2p" assert self.ip.endswith(sfx) r += b32decode(self.ip[0:-len(sfx)] + self.I2P_PAD, True) elif self.net == self.NET_CJDNS: r += socket.inet_pton(socket.AF_INET6, self.ip) else: raise Exception(f"Address type not supported") r += self.port.to_bytes(2, "big") return r def __repr__(self): return ("CAddress(nServices=%i net=%s addr=%s port=%i)" % (self.nServices, self.ADDRV2_NET_NAME[self.net], self.ip, self.port)) class CInv: __slots__ = ("hash", "type") typemap = { 0: "Error", MSG_TX: "TX", MSG_BLOCK: "Block", MSG_TX | MSG_WITNESS_FLAG: "WitnessTx", MSG_BLOCK | MSG_WITNESS_FLAG: "WitnessBlock", MSG_FILTERED_BLOCK: "filtered Block", MSG_CMPCT_BLOCK: "CompactBlock", MSG_WTX: "WTX", } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = int.from_bytes(f.read(4), "little") self.hash = deser_uint256(f) def serialize(self): r = b"" r += self.type.to_bytes(4, "little") r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) def __eq__(self, other): return isinstance(other, CInv) and self.hash == other.hash and self.type == other.type class CBlockLocator: __slots__ = ("nVersion", "vHave") def __init__(self): self.vHave = [] def deserialize(self, f): int.from_bytes(f.read(4), "little", signed=True) # Ignore version field. self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += (0).to_bytes(4, "little", signed=True) # Bitcoin Core ignores the version field. Set it to 0. r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(vHave=%s)" % (repr(self.vHave)) class COutPoint: __slots__ = ("hash", "n") def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = int.from_bytes(f.read(4), "little") def serialize(self): r = b"" r += ser_uint256(self.hash) r += self.n.to_bytes(4, "little") return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn: __slots__ = ("nSequence", "prevout", "scriptSig") def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = int.from_bytes(f.read(4), "little") def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += self.nSequence.to_bytes(4, "little") return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), self.scriptSig.hex(), self.nSequence) class CTxOut: __slots__ = ("nValue", "scriptPubKey") def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = int.from_bytes(f.read(8), "little", signed=True) self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += self.nValue.to_bytes(8, "little", signed=True) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // COIN, self.nValue % COIN, self.scriptPubKey.hex()) class CScriptWitness: __slots__ = ("stack",) def __init__(self): # stack is a vector of strings self.stack = [] def __repr__(self): return "CScriptWitness(%s)" % \ (",".join([x.hex() for x in self.stack])) def is_null(self): if self.stack: return False return True class CTxInWitness: __slots__ = ("scriptWitness",) def __init__(self): self.scriptWitness = CScriptWitness() def deserialize(self, f): self.scriptWitness.stack = deser_string_vector(f) def serialize(self): return ser_string_vector(self.scriptWitness.stack) def __repr__(self): return repr(self.scriptWitness) def is_null(self): return self.scriptWitness.is_null() class CTxWitness: __slots__ = ("vtxinwit",) def __init__(self): self.vtxinwit = [] def deserialize(self, f): for i in range(len(self.vtxinwit)): self.vtxinwit[i].deserialize(f) def serialize(self): r = b"" # This is different than the usual vector serialization -- # we omit the length of the vector, which is required to be # the same length as the transaction's vin vector. for x in self.vtxinwit: r += x.serialize() return r def __repr__(self): return "CTxWitness(%s)" % \ (';'.join([repr(x) for x in self.vtxinwit])) def is_null(self): for x in self.vtxinwit: if not x.is_null(): return False return True class CTransaction: __slots__ = ("hash", "nLockTime", "nVersion", "sha256", "vin", "vout", "wit") def __init__(self, tx=None): if tx is None: self.nVersion = 2 self.vin = [] self.vout = [] self.wit = CTxWitness() self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = tx.sha256 self.hash = tx.hash self.wit = copy.deepcopy(tx.wit) def deserialize(self, f): self.nVersion = int.from_bytes(f.read(4), "little", signed=True) self.vin = deser_vector(f, CTxIn) flags = 0 if len(self.vin) == 0: flags = int.from_bytes(f.read(1), "little") # Not sure why flags can't be zero, but this # matches the implementation in bitcoind if (flags != 0): self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) else: self.vout = deser_vector(f, CTxOut) if flags != 0: self.wit.vtxinwit = [CTxInWitness() for _ in range(len(self.vin))] self.wit.deserialize(f) else: self.wit = CTxWitness() self.nLockTime = int.from_bytes(f.read(4), "little") self.sha256 = None self.hash = None def serialize_without_witness(self): r = b"" r += self.nVersion.to_bytes(4, "little", signed=True) r += ser_vector(self.vin) r += ser_vector(self.vout) r += self.nLockTime.to_bytes(4, "little") return r # Only serialize with witness when explicitly called for def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += self.nVersion.to_bytes(4, "little", signed=True) if flags: dummy = [] r += ser_vector(dummy) r += flags.to_bytes(1, "little") r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: if (len(self.wit.vtxinwit) != len(self.vin)): # vtxinwit must have the same length as vin self.wit.vtxinwit = self.wit.vtxinwit[:len(self.vin)] for _ in range(len(self.wit.vtxinwit), len(self.vin)): self.wit.vtxinwit.append(CTxInWitness()) r += self.wit.serialize() r += self.nLockTime.to_bytes(4, "little") return r # Regular serialization is with witness -- must explicitly # call serialize_without_witness to exclude witness data. def serialize(self): return self.serialize_with_witness() def getwtxid(self): return hash256(self.serialize())[::-1].hex() # Recalculate the txid (transaction hash without witness) def rehash(self): self.sha256 = None self.calc_sha256() return self.hash # We will only cache the serialization without witness in # self.sha256 and self.hash -- those are expected to be the txid. def calc_sha256(self, with_witness=False): if with_witness: # Don't cache the result, just return it return uint256_from_str(hash256(self.serialize_with_witness())) if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize_without_witness())) self.hash = hash256(self.serialize_without_witness())[::-1].hex() def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True # Calculate the transaction weight using witness and non-witness # serialization size (does NOT use sigops). def get_weight(self): with_witness_size = len(self.serialize_with_witness()) without_witness_size = len(self.serialize_without_witness()) return (WITNESS_SCALE_FACTOR - 1) * without_witness_size + with_witness_size def get_vsize(self): return math.ceil(self.get_weight() / WITNESS_SCALE_FACTOR) def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s wit=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), repr(self.wit), self.nLockTime) class CBlockHeader: __slots__ = ("hash", "hashMerkleRoot", "hashPrevBlock", "nBits", "nNonce", "nTime", "nVersion", "sha256") def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 4 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = int.from_bytes(f.read(4), "little", signed=True) self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = int.from_bytes(f.read(4), "little") self.nBits = int.from_bytes(f.read(4), "little") self.nNonce = int.from_bytes(f.read(4), "little") self.sha256 = None self.hash = None def serialize(self): r = b"" r += self.nVersion.to_bytes(4, "little", signed=True) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += self.nTime.to_bytes(4, "little") r += self.nBits.to_bytes(4, "little") r += self.nNonce.to_bytes(4, "little") return r def calc_sha256(self): if self.sha256 is None: r = b"" r += self.nVersion.to_bytes(4, "little", signed=True) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += self.nTime.to_bytes(4, "little") r += self.nBits.to_bytes(4, "little") r += self.nNonce.to_bytes(4, "little") self.sha256 = uint256_from_str(hash256(r)) self.hash = hash256(r)[::-1].hex() def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) BLOCK_HEADER_SIZE = len(CBlockHeader().serialize()) assert_equal(BLOCK_HEADER_SIZE, 80) class CBlock(CBlockHeader): __slots__ = ("vtx",) def __init__(self, header=None): super().__init__(header) self.vtx = [] def deserialize(self, f): super().deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self, with_witness=True): r = b"" r += super().serialize() if with_witness: r += ser_vector(self.vtx, "serialize_with_witness") else: r += ser_vector(self.vtx, "serialize_without_witness") return r # Calculate the merkle root given a vector of transaction hashes @classmethod def get_merkle_root(cls, hashes): while len(hashes) > 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def calc_witness_merkle_root(self): # For witness root purposes, the hash of the # coinbase, with witness, is defined to be 0...0 hashes = [ser_uint256(0)] for tx in self.vtx[1:]: # Calculate the hashes with witness data hashes.append(ser_uint256(tx.calc_sha256(True))) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() # Calculate the block weight using witness and non-witness # serialization size (does NOT use sigops). def get_weight(self): with_witness_size = len(self.serialize(with_witness=True)) without_witness_size = len(self.serialize(with_witness=False)) return (WITNESS_SCALE_FACTOR - 1) * without_witness_size + with_witness_size def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class PrefilledTransaction: __slots__ = ("index", "tx") def __init__(self, index=0, tx = None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self, with_witness=True): r = b"" r += ser_compact_size(self.index) if with_witness: r += self.tx.serialize_with_witness() else: r += self.tx.serialize_without_witness() return r def serialize_without_witness(self): return self.serialize(with_witness=False) def serialize_with_witness(self): return self.serialize(with_witness=True) def __repr__(self): return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "prefilled_txn_length", "shortids", "shortids_length") def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = int.from_bytes(f.read(8), "little") self.shortids_length = deser_compact_size(f) for _ in range(self.shortids_length): # shortids are defined to be 6 bytes in the spec, so append # two zero bytes and read it in as an 8-byte number self.shortids.append(int.from_bytes(f.read(6) + b'\x00\x00', "little")) self.prefilled_txn = deser_vector(f, PrefilledTransaction) self.prefilled_txn_length = len(self.prefilled_txn) # When using version 2 compact blocks, we must serialize with_witness. def serialize(self, with_witness=False): r = b"" r += self.header.serialize() r += self.nonce.to_bytes(8, "little") r += ser_compact_size(self.shortids_length) for x in self.shortids: # We only want the first 6 bytes r += x.to_bytes(8, "little")[0:6] if with_witness: r += ser_vector(self.prefilled_txn, "serialize_with_witness") else: r += ser_vector(self.prefilled_txn, "serialize_without_witness") return r def __repr__(self): return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn)) # P2P version of the above that will use witness serialization (for compact # block version 2) class P2PHeaderAndShortWitnessIDs(P2PHeaderAndShortIDs): __slots__ = () def serialize(self): return super().serialize(with_witness=True) # Calculate the BIP 152-compact blocks shortid for a given transaction hash def calculate_shortid(k0, k1, tx_hash): expected_shortid = siphash256(k0, k1, tx_hash) expected_shortid &= 0x0000ffffffffffff return expected_shortid # This version gets rid of the array lengths, and reinterprets the differential # encoding into indices that can be used for lookup. class HeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "shortids", "use_witness") def __init__(self, p2pheaders_and_shortids = None): self.header = CBlockHeader() self.nonce = 0 self.shortids = [] self.prefilled_txn = [] self.use_witness = False if p2pheaders_and_shortids is not None: self.header = p2pheaders_and_shortids.header self.nonce = p2pheaders_and_shortids.nonce self.shortids = p2pheaders_and_shortids.shortids last_index = -1 for x in p2pheaders_and_shortids.prefilled_txn: self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx)) last_index = self.prefilled_txn[-1].index def to_p2p(self): if self.use_witness: ret = P2PHeaderAndShortWitnessIDs() else: ret = P2PHeaderAndShortIDs() ret.header = self.header ret.nonce = self.nonce ret.shortids_length = len(self.shortids) ret.shortids = self.shortids ret.prefilled_txn_length = len(self.prefilled_txn) ret.prefilled_txn = [] last_index = -1 for x in self.prefilled_txn: ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx)) last_index = x.index return ret def get_siphash_keys(self): header_nonce = self.header.serialize() header_nonce += self.nonce.to_bytes(8, "little") hash_header_nonce_as_str = sha256(header_nonce) key0 = int.from_bytes(hash_header_nonce_as_str[0:8], "little") key1 = int.from_bytes(hash_header_nonce_as_str[8:16], "little") return [ key0, key1 ] # Version 2 compact blocks use wtxid in shortids (rather than txid) def initialize_from_block(self, block, nonce=0, prefill_list=None, use_witness=False): if prefill_list is None: prefill_list = [0] self.header = CBlockHeader(block) self.nonce = nonce self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ] self.shortids = [] self.use_witness = use_witness [k0, k1] = self.get_siphash_keys() for i in range(len(block.vtx)): if i not in prefill_list: tx_hash = block.vtx[i].sha256 if use_witness: tx_hash = block.vtx[i].calc_sha256(with_witness=True) self.shortids.append(calculate_shortid(k0, k1, tx_hash)) def __repr__(self): return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn)) class BlockTransactionsRequest: __slots__ = ("blockhash", "indexes") def __init__(self, blockhash=0, indexes = None): self.blockhash = blockhash self.indexes = indexes if indexes is not None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) indexes_length = deser_compact_size(f) for _ in range(indexes_length): self.indexes.append(deser_compact_size(f)) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_compact_size(len(self.indexes)) for x in self.indexes: r += ser_compact_size(x) return r # helper to set the differentially encoded indexes from absolute ones def from_absolute(self, absolute_indexes): self.indexes = [] last_index = -1 for x in absolute_indexes: self.indexes.append(x-last_index-1) last_index = x def to_absolute(self): absolute_indexes = [] last_index = -1 for x in self.indexes: absolute_indexes.append(x+last_index+1) last_index = absolute_indexes[-1] return absolute_indexes def __repr__(self): return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes)) class BlockTransactions: __slots__ = ("blockhash", "transactions") def __init__(self, blockhash=0, transactions = None): self.blockhash = blockhash self.transactions = transactions if transactions is not None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) self.transactions = deser_vector(f, CTransaction) def serialize(self, with_witness=True): r = b"" r += ser_uint256(self.blockhash) if with_witness: r += ser_vector(self.transactions, "serialize_with_witness") else: r += ser_vector(self.transactions, "serialize_without_witness") return r def __repr__(self): return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions)) class CPartialMerkleTree: __slots__ = ("nTransactions", "vBits", "vHash") def __init__(self): self.nTransactions = 0 self.vHash = [] self.vBits = [] def deserialize(self, f): self.nTransactions = int.from_bytes(f.read(4), "little") self.vHash = deser_uint256_vector(f) vBytes = deser_string(f) self.vBits = [] for i in range(len(vBytes) * 8): self.vBits.append(vBytes[i//8] & (1 << (i % 8)) != 0) def serialize(self): r = b"" r += self.nTransactions.to_bytes(4, "little") r += ser_uint256_vector(self.vHash) vBytesArray = bytearray([0x00] * ((len(self.vBits) + 7)//8)) for i in range(len(self.vBits)): vBytesArray[i // 8] |= self.vBits[i] << (i % 8) r += ser_string(bytes(vBytesArray)) return r def __repr__(self): return "CPartialMerkleTree(nTransactions=%d, vHash=%s, vBits=%s)" % (self.nTransactions, repr(self.vHash), repr(self.vBits)) class CMerkleBlock: __slots__ = ("header", "txn") def __init__(self): self.header = CBlockHeader() self.txn = CPartialMerkleTree() def deserialize(self, f): self.header.deserialize(f) self.txn.deserialize(f) def serialize(self): r = b"" r += self.header.serialize() r += self.txn.serialize() return r def __repr__(self): return "CMerkleBlock(header=%s, txn=%s)" % (repr(self.header), repr(self.txn)) # Objects that correspond to messages on the wire class msg_version: __slots__ = ("addrFrom", "addrTo", "nNonce", "relay", "nServices", "nStartingHeight", "nTime", "nVersion", "strSubVer") msgtype = b"version" def __init__(self): self.nVersion = 0 self.nServices = 0 self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = '' self.nStartingHeight = -1 self.relay = 0 def deserialize(self, f): self.nVersion = int.from_bytes(f.read(4), "little", signed=True) self.nServices = int.from_bytes(f.read(8), "little") self.nTime = int.from_bytes(f.read(8), "little", signed=True) self.addrTo = CAddress() self.addrTo.deserialize(f, with_time=False) self.addrFrom = CAddress() self.addrFrom.deserialize(f, with_time=False) self.nNonce = int.from_bytes(f.read(8), "little") self.strSubVer = deser_string(f).decode('utf-8') self.nStartingHeight = int.from_bytes(f.read(4), "little", signed=True) # Relay field is optional for version 70001 onwards # But, unconditionally check it to match behaviour in bitcoind self.relay = int.from_bytes(f.read(1), "little") # f.read(1) may return an empty b'' def serialize(self): r = b"" r += self.nVersion.to_bytes(4, "little", signed=True) r += self.nServices.to_bytes(8, "little") r += self.nTime.to_bytes(8, "little", signed=True) r += self.addrTo.serialize(with_time=False) r += self.addrFrom.serialize(with_time=False) r += self.nNonce.to_bytes(8, "little") r += ser_string(self.strSubVer.encode('utf-8')) r += self.nStartingHeight.to_bytes(4, "little", signed=True) r += self.relay.to_bytes(1, "little") return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i relay=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight, self.relay) class msg_verack: __slots__ = () msgtype = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr: __slots__ = ("addrs",) msgtype = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_addrv2: __slots__ = ("addrs",) msgtype = b"addrv2" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress, "deserialize_v2") def serialize(self): return ser_vector(self.addrs, "serialize_v2") def __repr__(self): return "msg_addrv2(addrs=%s)" % (repr(self.addrs)) class msg_sendaddrv2: __slots__ = () msgtype = b"sendaddrv2" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendaddrv2()" class msg_inv: __slots__ = ("inv",) msgtype = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata: __slots__ = ("inv",) msgtype = b"getdata" def __init__(self, inv=None): self.inv = inv if inv is not None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks: __slots__ = ("locator", "hashstop") msgtype = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx: __slots__ = ("tx",) msgtype = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize_with_witness() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_wtxidrelay: __slots__ = () msgtype = b"wtxidrelay" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_wtxidrelay()" class msg_no_witness_tx(msg_tx): __slots__ = () def serialize(self): return self.tx.serialize_without_witness() class msg_block: __slots__ = ("block",) msgtype = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) # for cases where a user needs tighter control over what is sent over the wire # note that the user must supply the name of the msgtype, and the data class msg_generic: __slots__ = ("data") def __init__(self, msgtype, data=None): self.msgtype = msgtype self.data = data def serialize(self): return self.data def __repr__(self): return "msg_generic()" class msg_no_witness_block(msg_block): __slots__ = () def serialize(self): return self.block.serialize(with_witness=False) class msg_getaddr: __slots__ = () msgtype = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping: __slots__ = ("nonce",) msgtype = b"ping" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = int.from_bytes(f.read(8), "little") def serialize(self): r = b"" r += self.nonce.to_bytes(8, "little") return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong: __slots__ = ("nonce",) msgtype = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = int.from_bytes(f.read(8), "little") def serialize(self): r = b"" r += self.nonce.to_bytes(8, "little") return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool: __slots__ = () msgtype = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_notfound: __slots__ = ("vec", ) msgtype = b"notfound" def __init__(self, vec=None): self.vec = vec or [] def deserialize(self, f): self.vec = deser_vector(f, CInv) def serialize(self): return ser_vector(self.vec) def __repr__(self): return "msg_notfound(vec=%s)" % (repr(self.vec)) class msg_sendheaders: __slots__ = () msgtype = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders: __slots__ = ("hashstop", "locator",) msgtype = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # class msg_headers: __slots__ = ("headers",) msgtype = b"headers" def __init__(self, headers=None): self.headers = headers if headers is not None else [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_merkleblock: __slots__ = ("merkleblock",) msgtype = b"merkleblock" def __init__(self, merkleblock=None): if merkleblock is None: self.merkleblock = CMerkleBlock() else: self.merkleblock = merkleblock def deserialize(self, f): self.merkleblock.deserialize(f) def serialize(self): return self.merkleblock.serialize() def __repr__(self): return "msg_merkleblock(merkleblock=%s)" % (repr(self.merkleblock)) class msg_filterload: __slots__ = ("data", "nHashFuncs", "nTweak", "nFlags") msgtype = b"filterload" def __init__(self, data=b'00', nHashFuncs=0, nTweak=0, nFlags=0): self.data = data self.nHashFuncs = nHashFuncs self.nTweak = nTweak self.nFlags = nFlags def deserialize(self, f): self.data = deser_string(f) self.nHashFuncs = int.from_bytes(f.read(4), "little") self.nTweak = int.from_bytes(f.read(4), "little") self.nFlags = int.from_bytes(f.read(1), "little") def serialize(self): r = b"" r += ser_string(self.data) r += self.nHashFuncs.to_bytes(4, "little") r += self.nTweak.to_bytes(4, "little") r += self.nFlags.to_bytes(1, "little") return r def __repr__(self): return "msg_filterload(data={}, nHashFuncs={}, nTweak={}, nFlags={})".format( self.data, self.nHashFuncs, self.nTweak, self.nFlags) class msg_filteradd: __slots__ = ("data") msgtype = b"filteradd" def __init__(self, data): self.data = data def deserialize(self, f): self.data = deser_string(f) def serialize(self): r = b"" r += ser_string(self.data) return r def __repr__(self): return "msg_filteradd(data={})".format(self.data) class msg_filterclear: __slots__ = () msgtype = b"filterclear" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_filterclear()" class msg_feefilter: __slots__ = ("feerate",) msgtype = b"feefilter" def __init__(self, feerate=0): self.feerate = feerate def deserialize(self, f): self.feerate = int.from_bytes(f.read(8), "little") def serialize(self): r = b"" r += self.feerate.to_bytes(8, "little") return r def __repr__(self): return "msg_feefilter(feerate=%08x)" % self.feerate class msg_sendcmpct: __slots__ = ("announce", "version") msgtype = b"sendcmpct" def __init__(self, announce=False, version=1): self.announce = announce self.version = version def deserialize(self, f): self.announce = bool(int.from_bytes(f.read(1), "little")) self.version = int.from_bytes(f.read(8), "little") def serialize(self): r = b"" r += int(self.announce).to_bytes(1, "little") r += self.version.to_bytes(8, "little") return r def __repr__(self): return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version) class msg_cmpctblock: __slots__ = ("header_and_shortids",) msgtype = b"cmpctblock" def __init__(self, header_and_shortids = None): self.header_and_shortids = header_and_shortids def deserialize(self, f): self.header_and_shortids = P2PHeaderAndShortIDs() self.header_and_shortids.deserialize(f) def serialize(self): r = b"" r += self.header_and_shortids.serialize() return r def __repr__(self): return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids) class msg_getblocktxn: __slots__ = ("block_txn_request",) msgtype = b"getblocktxn" def __init__(self): self.block_txn_request = None def deserialize(self, f): self.block_txn_request = BlockTransactionsRequest() self.block_txn_request.deserialize(f) def serialize(self): r = b"" r += self.block_txn_request.serialize() return r def __repr__(self): return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request)) class msg_blocktxn: __slots__ = ("block_transactions",) msgtype = b"blocktxn" def __init__(self): self.block_transactions = BlockTransactions() def deserialize(self, f): self.block_transactions.deserialize(f) def serialize(self): r = b"" r += self.block_transactions.serialize() return r def __repr__(self): return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions)) class msg_no_witness_blocktxn(msg_blocktxn): __slots__ = () def serialize(self): return self.block_transactions.serialize(with_witness=False) class msg_getcfilters: __slots__ = ("filter_type", "start_height", "stop_hash") msgtype = b"getcfilters" def __init__(self, filter_type=None, start_height=None, stop_hash=None): self.filter_type = filter_type self.start_height = start_height self.stop_hash = stop_hash def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.start_height = int.from_bytes(f.read(4), "little") self.stop_hash = deser_uint256(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += self.start_height.to_bytes(4, "little") r += ser_uint256(self.stop_hash) return r def __repr__(self): return "msg_getcfilters(filter_type={:#x}, start_height={}, stop_hash={:x})".format( self.filter_type, self.start_height, self.stop_hash) class msg_cfilter: __slots__ = ("filter_type", "block_hash", "filter_data") msgtype = b"cfilter" def __init__(self, filter_type=None, block_hash=None, filter_data=None): self.filter_type = filter_type self.block_hash = block_hash self.filter_data = filter_data def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.block_hash = deser_uint256(f) self.filter_data = deser_string(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += ser_uint256(self.block_hash) r += ser_string(self.filter_data) return r def __repr__(self): return "msg_cfilter(filter_type={:#x}, block_hash={:x})".format( self.filter_type, self.block_hash) class msg_getcfheaders: __slots__ = ("filter_type", "start_height", "stop_hash") msgtype = b"getcfheaders" def __init__(self, filter_type=None, start_height=None, stop_hash=None): self.filter_type = filter_type self.start_height = start_height self.stop_hash = stop_hash def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.start_height = int.from_bytes(f.read(4), "little") self.stop_hash = deser_uint256(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += self.start_height.to_bytes(4, "little") r += ser_uint256(self.stop_hash) return r def __repr__(self): return "msg_getcfheaders(filter_type={:#x}, start_height={}, stop_hash={:x})".format( self.filter_type, self.start_height, self.stop_hash) class msg_cfheaders: __slots__ = ("filter_type", "stop_hash", "prev_header", "hashes") msgtype = b"cfheaders" def __init__(self, filter_type=None, stop_hash=None, prev_header=None, hashes=None): self.filter_type = filter_type self.stop_hash = stop_hash self.prev_header = prev_header self.hashes = hashes def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.stop_hash = deser_uint256(f) self.prev_header = deser_uint256(f) self.hashes = deser_uint256_vector(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += ser_uint256(self.stop_hash) r += ser_uint256(self.prev_header) r += ser_uint256_vector(self.hashes) return r def __repr__(self): return "msg_cfheaders(filter_type={:#x}, stop_hash={:x})".format( self.filter_type, self.stop_hash) class msg_getcfcheckpt: __slots__ = ("filter_type", "stop_hash") msgtype = b"getcfcheckpt" def __init__(self, filter_type=None, stop_hash=None): self.filter_type = filter_type self.stop_hash = stop_hash def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.stop_hash = deser_uint256(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += ser_uint256(self.stop_hash) return r def __repr__(self): return "msg_getcfcheckpt(filter_type={:#x}, stop_hash={:x})".format( self.filter_type, self.stop_hash) class msg_cfcheckpt: __slots__ = ("filter_type", "stop_hash", "headers") msgtype = b"cfcheckpt" def __init__(self, filter_type=None, stop_hash=None, headers=None): self.filter_type = filter_type self.stop_hash = stop_hash self.headers = headers def deserialize(self, f): self.filter_type = int.from_bytes(f.read(1), "little") self.stop_hash = deser_uint256(f) self.headers = deser_uint256_vector(f) def serialize(self): r = b"" r += self.filter_type.to_bytes(1, "little") r += ser_uint256(self.stop_hash) r += ser_uint256_vector(self.headers) return r def __repr__(self): return "msg_cfcheckpt(filter_type={:#x}, stop_hash={:x})".format( self.filter_type, self.stop_hash) class msg_sendtxrcncl: __slots__ = ("version", "salt") msgtype = b"sendtxrcncl" def __init__(self): self.version = 0 self.salt = 0 def deserialize(self, f): self.version = int.from_bytes(f.read(4), "little") self.salt = int.from_bytes(f.read(8), "little") def serialize(self): r = b"" r += self.version.to_bytes(4, "little") r += self.salt.to_bytes(8, "little") return r def __repr__(self): return "msg_sendtxrcncl(version=%lu, salt=%lu)" %\ (self.version, self.salt) class TestFrameworkScript(unittest.TestCase): def test_addrv2_encode_decode(self): def check_addrv2(ip, net): addr = CAddress() addr.net, addr.ip = net, ip ser = addr.serialize_v2() actual = CAddress() actual.deserialize_v2(BytesIO(ser)) self.assertEqual(actual, addr) check_addrv2("1.65.195.98", CAddress.NET_IPV4) check_addrv2("2001:41f0::62:6974:636f:696e", CAddress.NET_IPV6) check_addrv2("2bqghnldu6mcug4pikzprwhtjjnsyederctvci6klcwzepnjd46ikjyd.onion", CAddress.NET_TORV3) check_addrv2("255fhcp6ajvftnyo7bwz3an3t4a4brhopm3bamyh2iu5r3gnr2rq.b32.i2p", CAddress.NET_I2P) check_addrv2("fc32:17ea:e415:c3bf:9808:149d:b5a2:c9aa", CAddress.NET_CJDNS)