#!/usr/bin/env python3 # Copyright (c) 2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test-only Elligator Swift implementation WARNING: This code is slow and uses bad randomness. Do not use for anything but tests.""" import csv import os import random import unittest from test_framework.crypto.secp256k1 import FE, G, GE # Precomputed constant square root of -3 (mod p). MINUS_3_SQRT = FE(-3).sqrt() def xswiftec(u, t): """Decode field elements (u, t) to an X coordinate on the curve.""" if u == 0: u = FE(1) if t == 0: t = FE(1) if u**3 + t**2 + 7 == 0: t = 2 * t X = (u**3 + 7 - t**2) / (2 * t) Y = (X + t) / (MINUS_3_SQRT * u) for x in (u + 4 * Y**2, (-X / Y - u) / 2, (X / Y - u) / 2): if GE.is_valid_x(x): return x assert False def xswiftec_inv(x, u, case): """Given x and u, find t such that xswiftec(u, t) = x, or return None. Case selects which of the up to 8 results to return.""" if case & 2 == 0: if GE.is_valid_x(-x - u): return None v = x s = -(u**3 + 7) / (u**2 + u*v + v**2) else: s = x - u if s == 0: return None r = (-s * (4 * (u**3 + 7) + 3 * s * u**2)).sqrt() if r is None: return None if case & 1 and r == 0: return None v = (-u + r / s) / 2 w = s.sqrt() if w is None: return None if case & 5 == 0: return -w * (u * (1 - MINUS_3_SQRT) / 2 + v) if case & 5 == 1: return w * (u * (1 + MINUS_3_SQRT) / 2 + v) if case & 5 == 4: return w * (u * (1 - MINUS_3_SQRT) / 2 + v) if case & 5 == 5: return -w * (u * (1 + MINUS_3_SQRT) / 2 + v) def xelligatorswift(x): """Given a field element X on the curve, find (u, t) that encode them.""" assert GE.is_valid_x(x) while True: u = FE(random.randrange(1, FE.SIZE)) case = random.randrange(0, 8) t = xswiftec_inv(x, u, case) if t is not None: return u, t def ellswift_create(): """Generate a (privkey, ellswift_pubkey) pair.""" priv = random.randrange(1, GE.ORDER) u, t = xelligatorswift((priv * G).x) return priv.to_bytes(32, 'big'), u.to_bytes() + t.to_bytes() def ellswift_ecdh_xonly(pubkey_theirs, privkey): """Compute X coordinate of shared ECDH point between ellswift pubkey and privkey.""" u = FE(int.from_bytes(pubkey_theirs[:32], 'big')) t = FE(int.from_bytes(pubkey_theirs[32:], 'big')) d = int.from_bytes(privkey, 'big') return (d * GE.lift_x(xswiftec(u, t))).x.to_bytes() class TestFrameworkEllSwift(unittest.TestCase): def test_xswiftec(self): """Verify that xswiftec maps all inputs to the curve.""" for _ in range(32): u = FE(random.randrange(0, FE.SIZE)) t = FE(random.randrange(0, FE.SIZE)) x = xswiftec(u, t) self.assertTrue(GE.is_valid_x(x)) # Check that inputs which are considered undefined in the original # SwiftEC paper can also be decoded successfully (by remapping) undefined_inputs = [ (FE(0), FE(23)), # u = 0 (FE(42), FE(0)), # t = 0 (FE(5), FE(-132).sqrt()), # u^3 + t^2 + 7 = 0 ] assert undefined_inputs[-1][0]**3 + undefined_inputs[-1][1]**2 + 7 == 0 for u, t in undefined_inputs: x = xswiftec(u, t) self.assertTrue(GE.is_valid_x(x)) def test_elligator_roundtrip(self): """Verify that encoding using xelligatorswift decodes back using xswiftec.""" for _ in range(32): while True: # Loop until we find a valid X coordinate on the curve. x = FE(random.randrange(1, FE.SIZE)) if GE.is_valid_x(x): break # Encoding it to (u, t), decode it back, and compare. u, t = xelligatorswift(x) x2 = xswiftec(u, t) self.assertEqual(x2, x) def test_ellswift_ecdh_xonly(self): """Verify that shared secret computed by ellswift_ecdh_xonly match.""" for _ in range(32): privkey1, encoding1 = ellswift_create() privkey2, encoding2 = ellswift_create() shared_secret1 = ellswift_ecdh_xonly(encoding1, privkey2) shared_secret2 = ellswift_ecdh_xonly(encoding2, privkey1) self.assertEqual(shared_secret1, shared_secret2) def test_elligator_encode_testvectors(self): """Implement the BIP324 test vectors for ellswift encoding (read from xswiftec_inv_test_vectors.csv).""" vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'xswiftec_inv_test_vectors.csv') with open(vectors_file, newline='', encoding='utf8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: u = FE.from_bytes(bytes.fromhex(row['u'])) x = FE.from_bytes(bytes.fromhex(row['x'])) for case in range(8): ret = xswiftec_inv(x, u, case) if ret is None: self.assertEqual(row[f"case{case}_t"], "") else: self.assertEqual(row[f"case{case}_t"], ret.to_bytes().hex()) self.assertEqual(xswiftec(u, ret), x) def test_elligator_decode_testvectors(self): """Implement the BIP324 test vectors for ellswift decoding (read from ellswift_decode_test_vectors.csv).""" vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ellswift_decode_test_vectors.csv') with open(vectors_file, newline='', encoding='utf8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: encoding = bytes.fromhex(row['ellswift']) assert len(encoding) == 64 expected_x = FE(int(row['x'], 16)) u = FE(int.from_bytes(encoding[:32], 'big')) t = FE(int.from_bytes(encoding[32:], 'big')) x = xswiftec(u, t) self.assertEqual(x, expected_x) self.assertTrue(GE.is_valid_x(x))