#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Utilities for working directly with the wallet's BDB database file This is specific to the configuration of BDB used in this project: - pagesize: 4096 bytes - Outer database contains single subdatabase named 'main' - btree - btree leaf pages Each key-value pair is two entries in a btree leaf. The first is the key, the one that follows is the value. And so on. Note that the entry data is itself not in the correct order. Instead entry offsets are stored in the correct order and those offsets are needed to then retrieve the data itself. Page format can be found in BDB source code dbinc/db_page.h This only implements the deserialization of btree metadata pages and normal btree pages. Overflow pages are not implemented but may be needed in the future if dealing with wallets with large transactions. `db_dump -da wallet.dat` is useful to see the data in a wallet.dat BDB file """ import binascii import struct # Important constants PAGESIZE = 4096 OUTER_META_PAGE = 0 INNER_META_PAGE = 2 # Page type values BTREE_INTERNAL = 3 BTREE_LEAF = 5 BTREE_META = 9 # Some magic numbers for sanity checking BTREE_MAGIC = 0x053162 DB_VERSION = 9 # Deserializes a leaf page into a dict. # Btree internal pages have the same header, for those, return None. # For the btree leaf pages, deserialize them and put all the data into a dict def dump_leaf_page(data): page_info = {} page_header = data[0:26] _, pgno, prev_pgno, next_pgno, entries, hf_offset, level, pg_type = struct.unpack('QIIIHHBB', page_header) page_info['pgno'] = pgno page_info['prev_pgno'] = prev_pgno page_info['next_pgno'] = next_pgno page_info['hf_offset'] = hf_offset page_info['level'] = level page_info['pg_type'] = pg_type page_info['entry_offsets'] = struct.unpack('{}H'.format(entries), data[26:26 + entries * 2]) page_info['entries'] = [] if pg_type == BTREE_INTERNAL: # Skip internal pages. These are the internal nodes of the btree and don't contain anything relevant to us return None assert pg_type == BTREE_LEAF, 'A non-btree leaf page has been encountered while dumping leaves' for i in range(0, entries): offset = page_info['entry_offsets'][i] entry = {'offset': offset} page_data_header = data[offset:offset + 3] e_len, pg_type = struct.unpack('HB', page_data_header) entry['len'] = e_len entry['pg_type'] = pg_type entry['data'] = data[offset + 3:offset + 3 + e_len] page_info['entries'].append(entry) return page_info # Deserializes a btree metadata page into a dict. # Does a simple sanity check on the magic value, type, and version def dump_meta_page(page): # metadata page # general metadata metadata = {} meta_page = page[0:72] _, pgno, magic, version, pagesize, encrypt_alg, pg_type, metaflags, _, free, last_pgno, nparts, key_count, record_count, flags, uid = struct.unpack('QIIIIBBBBIIIIII20s', meta_page) metadata['pgno'] = pgno metadata['magic'] = magic metadata['version'] = version metadata['pagesize'] = pagesize metadata['encrypt_alg'] = encrypt_alg metadata['pg_type'] = pg_type metadata['metaflags'] = metaflags metadata['free'] = free metadata['last_pgno'] = last_pgno metadata['nparts'] = nparts metadata['key_count'] = key_count metadata['record_count'] = record_count metadata['flags'] = flags metadata['uid'] = binascii.hexlify(uid) assert magic == BTREE_MAGIC, 'bdb magic does not match bdb btree magic' assert pg_type == BTREE_META, 'Metadata page is not a btree metadata page' assert version == DB_VERSION, 'Database too new' # btree metadata btree_meta_page = page[72:512] _, minkey, re_len, re_pad, root, _, crypto_magic, _, iv, chksum = struct.unpack('IIIII368sI12s16s20s', btree_meta_page) metadata['minkey'] = minkey metadata['re_len'] = re_len metadata['re_pad'] = re_pad metadata['root'] = root metadata['crypto_magic'] = crypto_magic metadata['iv'] = binascii.hexlify(iv) metadata['chksum'] = binascii.hexlify(chksum) return metadata # Given the dict from dump_leaf_page, get the key-value pairs and put them into a dict def extract_kv_pairs(page_data): out = {} last_key = None for i, entry in enumerate(page_data['entries']): # By virtue of these all being pairs, even number entries are keys, and odd are values if i % 2 == 0: out[entry['data']] = b'' last_key = entry['data'] else: out[last_key] = entry['data'] return out # Extract the key-value pairs of the BDB file given in filename def dump_bdb_kv(filename): # Read in the BDB file and start deserializing it pages = [] with open(filename, 'rb') as f: data = f.read(PAGESIZE) while len(data) > 0: pages.append(data) data = f.read(PAGESIZE) # Sanity check the meta pages dump_meta_page(pages[OUTER_META_PAGE]) dump_meta_page(pages[INNER_META_PAGE]) # Fetch the kv pairs from the leaf pages kv = {} for i in range(3, len(pages)): info = dump_leaf_page(pages[i]) if info is not None: info_kv = extract_kv_pairs(info) kv = {**kv, **info_kv} return kv