#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the Partially Signed Transaction RPCs. """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, connect_nodes_bi, disconnect_nodes, find_output, sync_blocks, ) import json import os MAX_BIP125_RBF_SEQUENCE = 0xfffffffd # Create one-input, one-output, no-fee transaction: class PSBTTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = False self.num_nodes = 3 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def test_utxo_conversion(self): mining_node = self.nodes[2] offline_node = self.nodes[0] online_node = self.nodes[1] # Disconnect offline node from others disconnect_nodes(offline_node, 1) disconnect_nodes(online_node, 0) disconnect_nodes(offline_node, 2) disconnect_nodes(mining_node, 0) # Mine a transaction that credits the offline address offline_addr = offline_node.getnewaddress(address_type="p2sh-segwit") online_addr = online_node.getnewaddress(address_type="p2sh-segwit") online_node.importaddress(offline_addr, "", False) mining_node.sendtoaddress(address=offline_addr, amount=1.0) mining_node.generate(nblocks=1) sync_blocks([mining_node, online_node]) # Construct an unsigned PSBT on the online node (who doesn't know the output is Segwit, so will include a non-witness UTXO) utxos = online_node.listunspent(addresses=[offline_addr]) raw = online_node.createrawtransaction([{"txid":utxos[0]["txid"], "vout":utxos[0]["vout"]}],[{online_addr:0.9999}]) psbt = online_node.walletprocesspsbt(online_node.converttopsbt(raw))["psbt"] assert("non_witness_utxo" in mining_node.decodepsbt(psbt)["inputs"][0]) # Have the offline node sign the PSBT (which will update the UTXO to segwit) signed_psbt = offline_node.walletprocesspsbt(psbt)["psbt"] assert("witness_utxo" in mining_node.decodepsbt(signed_psbt)["inputs"][0]) # Make sure we can mine the resulting transaction txid = mining_node.sendrawtransaction(mining_node.finalizepsbt(signed_psbt)["hex"]) mining_node.generate(1) sync_blocks([mining_node, online_node]) assert_equal(online_node.gettxout(txid,0)["confirmations"], 1) # Reconnect connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) def run_test(self): # Create and fund a raw tx for sending 10 BTC psbtx1 = self.nodes[0].walletcreatefundedpsbt([], {self.nodes[2].getnewaddress():10})['psbt'] # Node 1 should not be able to add anything to it but still return the psbtx same as before psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt'] assert_equal(psbtx1, psbtx) # Sign the transaction and send signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt'] final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex'] self.nodes[0].sendrawtransaction(final_tx) # Create p2sh, p2wpkh, and p2wsh addresses pubkey0 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())['pubkey'] pubkey1 = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())['pubkey'] pubkey2 = self.nodes[2].getaddressinfo(self.nodes[2].getnewaddress())['pubkey'] p2sh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "legacy")['address'] p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "bech32")['address'] p2sh_p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address'] p2wpkh = self.nodes[1].getnewaddress("", "bech32") p2pkh = self.nodes[1].getnewaddress("", "legacy") p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit") # fund those addresses rawtx = self.nodes[0].createrawtransaction([], {p2sh:10, p2wsh:10, p2wpkh:10, p2sh_p2wsh:10, p2sh_p2wpkh:10, p2pkh:10}) rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition":3}) signed_tx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])['hex'] txid = self.nodes[0].sendrawtransaction(signed_tx) self.nodes[0].generate(6) self.sync_all() # Find the output pos p2sh_pos = -1 p2wsh_pos = -1 p2wpkh_pos = -1 p2pkh_pos = -1 p2sh_p2wsh_pos = -1 p2sh_p2wpkh_pos = -1 decoded = self.nodes[0].decoderawtransaction(signed_tx) for out in decoded['vout']: if out['scriptPubKey']['addresses'][0] == p2sh: p2sh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wsh: p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wpkh: p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh: p2sh_p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh: p2sh_p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2pkh: p2pkh_pos = out['n'] # spend single key from node 1 rawtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt'] walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(rawtx) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt(walletprocesspsbt_out['psbt'])['hex']) # feeRate of 0.1 BTC / KB produces a total fee slightly below -maxtxfee (~0.05280000): res = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 0.1}) assert_greater_than(res["fee"], 0.05) assert_greater_than(0.06, res["fee"]) # feeRate of 10 BTC / KB produces a total fee well above -maxtxfee # previously this was silently capped at -maxtxfee assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[1].walletcreatefundedpsbt, [{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 10}) # partially sign multisig things with node 1 psbtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wsh_pos},{"txid":txid,"vout":p2sh_pos},{"txid":txid,"vout":p2sh_p2wsh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt'] walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx) psbtx = walletprocesspsbt_out['psbt'] assert_equal(walletprocesspsbt_out['complete'], False) # partially sign with node 2. This should be complete and sendable walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt(walletprocesspsbt_out['psbt'])['hex']) # check that walletprocesspsbt fails to decode a non-psbt rawtx = self.nodes[1].createrawtransaction([{"txid":txid,"vout":p2wpkh_pos}], {self.nodes[1].getnewaddress():9.99}) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[1].walletprocesspsbt, rawtx) # Convert a non-psbt to psbt and make sure we can decode it rawtx = self.nodes[0].createrawtransaction([], {self.nodes[1].getnewaddress():10}) rawtx = self.nodes[0].fundrawtransaction(rawtx) new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Make sure that a psbt with signatures cannot be converted signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex']) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].converttopsbt, signedtx['hex']) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].converttopsbt, signedtx['hex'], False) # Unless we allow it to convert and strip signatures self.nodes[0].converttopsbt(signedtx['hex'], True) # Explicilty allow converting non-empty txs new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Create outputs to nodes 1 and 2 node1_addr = self.nodes[1].getnewaddress() node2_addr = self.nodes[2].getnewaddress() txid1 = self.nodes[0].sendtoaddress(node1_addr, 13) txid2 =self.nodes[0].sendtoaddress(node2_addr, 13) self.nodes[0].generate(6) self.sync_all() vout1 = find_output(self.nodes[1], txid1, 13) vout2 = find_output(self.nodes[2], txid2, 13) # Create a psbt spending outputs from nodes 1 and 2 psbt_orig = self.nodes[0].createpsbt([{"txid":txid1, "vout":vout1}, {"txid":txid2, "vout":vout2}], {self.nodes[0].getnewaddress():25.999}) # Update psbts, should only have data for one input and not the other psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt'] psbt1_decoded = self.nodes[0].decodepsbt(psbt1) assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1] psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt'] psbt2_decoded = self.nodes[0].decodepsbt(psbt2) assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1] # Combine, finalize, and send the psbts combined = self.nodes[0].combinepsbt([psbt1, psbt2]) finalized = self.nodes[0].finalizepsbt(combined)['hex'] self.nodes[0].sendrawtransaction(finalized) self.nodes[0].generate(6) self.sync_all() # Test additional args in walletcreatepsbt # Make sure both pre-included and funded inputs # have the correct sequence numbers based on # replaceable arg block_height = self.nodes[0].getblockcount() unspent = self.nodes[0].listunspent()[0] psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"replaceable":True}, False) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" not in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height+2) # Same construction with only locktime set psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height, {}, True) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE assert "bip32_derivs" in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height) # Same construction without optional arguments psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}]) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in in decoded_psbt["tx"]["vin"]: assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE assert_equal(decoded_psbt["tx"]["locktime"], 0) # Regression test for 14473 (mishandling of already-signed witness transaction): psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}]) complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"]) double_processed_psbt = self.nodes[0].walletprocesspsbt(complete_psbt["psbt"]) assert_equal(complete_psbt, double_processed_psbt) # We don't care about the decode result, but decoding must succeed. self.nodes[0].decodepsbt(double_processed_psbt["psbt"]) # Make sure change address wallet does not have P2SH innerscript access to results in success # when attempting BnB coin selection self.nodes[0].walletcreatefundedpsbt([], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"changeAddress":self.nodes[1].getnewaddress()}, False) # BIP 174 Test Vectors # Check that unknown values are just passed through unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA=" unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt'] assert_equal(unknown_psbt, unknown_out) # Open the data file with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/rpc_psbt.json'), encoding='utf-8') as f: d = json.load(f) invalids = d['invalid'] valids = d['valid'] creators = d['creator'] signers = d['signer'] combiners = d['combiner'] finalizers = d['finalizer'] extractors = d['extractor'] # Invalid PSBTs for invalid in invalids: assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decodepsbt, invalid) # Valid PSBTs for valid in valids: self.nodes[0].decodepsbt(valid) # Creator Tests for creator in creators: created_tx = self.nodes[0].createpsbt(creator['inputs'], creator['outputs']) assert_equal(created_tx, creator['result']) # Signer tests for i, signer in enumerate(signers): self.nodes[2].createwallet("wallet{}".format(i)) wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i)) for key in signer['privkeys']: wrpc.importprivkey(key) signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt'] assert_equal(signed_tx, signer['result']) # Combiner test for combiner in combiners: combined = self.nodes[2].combinepsbt(combiner['combine']) assert_equal(combined, combiner['result']) # Finalizer test for finalizer in finalizers: finalized = self.nodes[2].finalizepsbt(finalizer['finalize'], False)['psbt'] assert_equal(finalized, finalizer['result']) # Extractor test for extractor in extractors: extracted = self.nodes[2].finalizepsbt(extractor['extract'], True)['hex'] assert_equal(extracted, extractor['result']) # Unload extra wallets for i, signer in enumerate(signers): self.nodes[2].unloadwallet("wallet{}".format(i)) self.test_utxo_conversion() if __name__ == '__main__': PSBTTest().main()