#!/usr/bin/env python3 # Copyright (c) 2016-2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test compact blocks (BIP 152).""" import random from test_framework.blocktools import ( COINBASE_MATURITY, NORMAL_GBT_REQUEST_PARAMS, add_witness_commitment, create_block, ) from test_framework.messages import ( BlockTransactions, BlockTransactionsRequest, CBlock, CBlockHeader, CInv, COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, from_hex, HeaderAndShortIDs, MSG_BLOCK, MSG_CMPCT_BLOCK, MSG_WITNESS_FLAG, P2PHeaderAndShortIDs, PrefilledTransaction, calculate_shortid, msg_block, msg_blocktxn, msg_cmpctblock, msg_getblocktxn, msg_getdata, msg_getheaders, msg_headers, msg_inv, msg_no_witness_block, msg_no_witness_blocktxn, msg_sendcmpct, msg_sendheaders, msg_tx, ser_uint256, tx_from_hex, ) from test_framework.p2p import ( P2PInterface, p2p_lock, ) from test_framework.script import ( CScript, OP_DROP, OP_TRUE, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, softfork_active, ) from test_framework.wallet import MiniWallet # TestP2PConn: A peer we use to send messages to bitcoind, and store responses. class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.last_sendcmpct = [] self.block_announced = False # Store the hashes of blocks we've seen announced. # This is for synchronizing the p2p message traffic, # so we can eg wait until a particular block is announced. self.announced_blockhashes = set() def on_sendcmpct(self, message): self.last_sendcmpct.append(message) def on_cmpctblock(self, message): self.block_announced = True self.last_message["cmpctblock"].header_and_shortids.header.calc_sha256() self.announced_blockhashes.add(self.last_message["cmpctblock"].header_and_shortids.header.sha256) def on_headers(self, message): self.block_announced = True for x in self.last_message["headers"].headers: x.calc_sha256() self.announced_blockhashes.add(x.sha256) def on_inv(self, message): for x in self.last_message["inv"].inv: if x.type == MSG_BLOCK: self.block_announced = True self.announced_blockhashes.add(x.hash) # Requires caller to hold p2p_lock def received_block_announcement(self): return self.block_announced def clear_block_announcement(self): with p2p_lock: self.block_announced = False self.last_message.pop("inv", None) self.last_message.pop("headers", None) self.last_message.pop("cmpctblock", None) def clear_getblocktxn(self): with p2p_lock: self.last_message.pop("getblocktxn", None) def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.send_message(msg) def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) def request_headers_and_sync(self, locator, hashstop=0): self.clear_block_announcement() self.get_headers(locator, hashstop) self.wait_until(self.received_block_announcement, timeout=30) self.clear_block_announcement() # Block until a block announcement for a particular block hash is # received. def wait_for_block_announcement(self, block_hash, timeout=30): def received_hash(): return (block_hash in self.announced_blockhashes) self.wait_until(received_hash, timeout=timeout) def send_await_disconnect(self, message, timeout=30): """Sends a message to the node and wait for disconnect. This is used when we want to send a message into the node that we expect will get us disconnected, eg an invalid block.""" self.send_message(message) self.wait_for_disconnect(timeout=timeout) class CompactBlocksTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [[ "-acceptnonstdtxn=1", ]] self.utxos = [] def build_block_on_tip(self, node): block = create_block(tmpl=node.getblocktemplate(NORMAL_GBT_REQUEST_PARAMS)) block.solve() return block # Create 10 more anyone-can-spend utxo's for testing. def make_utxos(self): block = self.build_block_on_tip(self.nodes[0]) self.segwit_node.send_and_ping(msg_no_witness_block(block)) assert int(self.nodes[0].getbestblockhash(), 16) == block.sha256 self.generate(self.wallet, COINBASE_MATURITY) total_value = block.vtx[0].vout[0].nValue out_value = total_value // 10 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b'')) for _ in range(10): tx.vout.append(CTxOut(out_value, CScript([OP_TRUE]))) tx.rehash() block2 = self.build_block_on_tip(self.nodes[0]) block2.vtx.append(tx) block2.hashMerkleRoot = block2.calc_merkle_root() block2.solve() self.segwit_node.send_and_ping(msg_no_witness_block(block2)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256) self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)]) # Test "sendcmpct" (between peers preferring the same version): # - No compact block announcements unless sendcmpct is sent. # - If sendcmpct is sent with version = 1, the message is ignored. # - If sendcmpct is sent with version > 2, the message is ignored. # - If sendcmpct is sent with boolean 0, then block announcements are not # made with compact blocks. # - If sendcmpct is then sent with boolean 1, then new block announcements # are made with compact blocks. def test_sendcmpct(self, test_node): node = self.nodes[0] # Make sure we get a SENDCMPCT message from our peer def received_sendcmpct(): return (len(test_node.last_sendcmpct) > 0) test_node.wait_until(received_sendcmpct, timeout=30) with p2p_lock: # Check that version 2 is received. assert_equal(test_node.last_sendcmpct[0].version, 2) test_node.last_sendcmpct = [] tip = int(node.getbestblockhash(), 16) def check_announcement_of_new_block(node, peer, predicate): peer.clear_block_announcement() block_hash = int(self.generate(node, 1)[0], 16) peer.wait_for_block_announcement(block_hash, timeout=30) assert peer.block_announced with p2p_lock: assert predicate(peer), ( "block_hash={!r}, cmpctblock={!r}, inv={!r}".format( block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None))) # We shouldn't get any block announcements via cmpctblock yet. check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Try one more time, this time after requesting headers. test_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message) # Test a few ways of using sendcmpct that should NOT # result in compact block announcements. # Before each test, sync the headers chain. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-low version test_node.send_and_ping(msg_sendcmpct(announce=True, version=1)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-high version test_node.send_and_ping(msg_sendcmpct(announce=True, version=3)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with valid version, but announce=False test_node.send_and_ping(msg_sendcmpct(announce=False, version=2)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Finally, try a SENDCMPCT message with announce=True test_node.send_and_ping(msg_sendcmpct(announce=True, version=2)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time (no headers sync should be needed!) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after turning on sendheaders test_node.send_and_ping(msg_sendheaders()) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after sending a version=1, announce=false message. test_node.send_and_ping(msg_sendcmpct(announce=False, version=1)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Now turn off announcements test_node.send_and_ping(msg_sendcmpct(announce=False, version=2)) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message) # This test actually causes bitcoind to (reasonably!) disconnect us, so do this last. def test_invalid_cmpctblock_message(self): self.generate(self.nodes[0], COINBASE_MATURITY + 1) block = self.build_block_on_tip(self.nodes[0]) cmpct_block = P2PHeaderAndShortIDs() cmpct_block.header = CBlockHeader(block) cmpct_block.prefilled_txn_length = 1 # This index will be too high prefilled_txn = PrefilledTransaction(1, block.vtx[0]) cmpct_block.prefilled_txn = [prefilled_txn] self.segwit_node.send_await_disconnect(msg_cmpctblock(cmpct_block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock) # Compare the generated shortids to what we expect based on BIP 152, given # bitcoind's choice of nonce. def test_compactblock_construction(self, test_node): node = self.nodes[0] # Generate a bunch of transactions. self.generate(node, COINBASE_MATURITY + 1) num_transactions = 25 segwit_tx_generated = False for _ in range(num_transactions): hex_tx = self.wallet.send_self_transfer(from_node=self.nodes[0])['hex'] tx = tx_from_hex(hex_tx) if not tx.wit.is_null(): segwit_tx_generated = True assert segwit_tx_generated # check that our test is not broken # Wait until we've seen the block announcement for the resulting tip tip = int(node.getbestblockhash(), 16) test_node.wait_for_block_announcement(tip) # Make sure we will receive a fast-announce compact block self.request_cb_announcements(test_node) # Now mine a block, and look at the resulting compact block. test_node.clear_block_announcement() block_hash = int(self.generate(node, 1)[0], 16) # Store the raw block in our internal format. block = from_hex(CBlock(), node.getblock("%064x" % block_hash, False)) for tx in block.vtx: tx.calc_sha256() block.rehash() # Wait until the block was announced (via compact blocks) test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30) # Now fetch and check the compact block header_and_shortids = None with p2p_lock: # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block(header_and_shortids, block_hash, block) # Now fetch the compact block using a normal non-announce getdata test_node.clear_block_announcement() inv = CInv(MSG_CMPCT_BLOCK, block_hash) test_node.send_message(msg_getdata([inv])) test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30) # Now fetch and check the compact block header_and_shortids = None with p2p_lock: # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block(header_and_shortids, block_hash, block) def check_compactblock_construction_from_block(self, header_and_shortids, block_hash, block): # Check that we got the right block! header_and_shortids.header.calc_sha256() assert_equal(header_and_shortids.header.sha256, block_hash) # Make sure the prefilled_txn appears to have included the coinbase assert len(header_and_shortids.prefilled_txn) >= 1 assert_equal(header_and_shortids.prefilled_txn[0].index, 0) # Check that all prefilled_txn entries match what's in the block. for entry in header_and_shortids.prefilled_txn: entry.tx.calc_sha256() # This checks the non-witness parts of the tx agree assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256) # And this checks the witness wtxid = entry.tx.calc_sha256(True) assert_equal(wtxid, block.vtx[entry.index].calc_sha256(True)) # Check that the cmpctblock message announced all the transactions. assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx)) # And now check that all the shortids are as expected as well. # Determine the siphash keys to use. [k0, k1] = header_and_shortids.get_siphash_keys() index = 0 while index < len(block.vtx): if (len(header_and_shortids.prefilled_txn) > 0 and header_and_shortids.prefilled_txn[0].index == index): # Already checked prefilled transactions above header_and_shortids.prefilled_txn.pop(0) else: tx_hash = block.vtx[index].calc_sha256(True) shortid = calculate_shortid(k0, k1, tx_hash) assert_equal(shortid, header_and_shortids.shortids[0]) header_and_shortids.shortids.pop(0) index += 1 # Test that bitcoind requests compact blocks when we announce new blocks # via header or inv, and that responding to getblocktxn causes the block # to be successfully reconstructed. def test_compactblock_requests(self, test_node): node = self.nodes[0] # Try announcing a block with an inv or header, expect a compactblock # request for announce in ["inv", "header"]: block = self.build_block_on_tip(node) if announce == "inv": test_node.send_message(msg_inv([CInv(MSG_BLOCK, block.sha256)])) test_node.wait_for_getheaders(timeout=30) test_node.send_header_for_blocks([block]) else: test_node.send_header_for_blocks([block]) test_node.wait_for_getdata([block.sha256], timeout=30) assert_equal(test_node.last_message["getdata"].inv[0].type, 4) # Send back a compactblock message that omits the coinbase comp_block = HeaderAndShortIDs() comp_block.header = CBlockHeader(block) comp_block.nonce = 0 [k0, k1] = comp_block.get_siphash_keys() coinbase_hash = block.vtx[0].calc_sha256(True) comp_block.shortids = [calculate_shortid(k0, k1, coinbase_hash)] test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # Expect a getblocktxn message. with p2p_lock: assert "getblocktxn" in test_node.last_message absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [0]) # should be a coinbase request # Send the coinbase, and verify that the tip advances. msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = [block.vtx[0]] test_node.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) # Create a chain of transactions from given utxo, and add to a new block. def build_block_with_transactions(self, node, utxo, num_transactions): block = self.build_block_on_tip(node) for _ in range(num_transactions): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b'')) tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.rehash() utxo = [tx.sha256, 0, tx.vout[0].nValue] block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() return block # Test that we only receive getblocktxn requests for transactions that the # node needs, and that responding to them causes the block to be # reconstructed. def test_getblocktxn_requests(self, test_node): node = self.nodes[0] def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with p2p_lock: assert "getblocktxn" in peer.last_message absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, use_witness=True) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_no_witness_blocktxn() msg_bt = msg_blocktxn() # serialize with witnesses msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, prefill_list=[0, 1, 5], use_witness=True) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(block.vtx[1])) assert block.vtx[1].hash in node.getrawmempool() # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4], use_witness=True) test_getblocktxn_response(comp_block, test_node, [5]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool # Clear out last request. with p2p_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0], use_witness=True) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with p2p_lock: # Shouldn't have gotten a request for any transaction assert "getblocktxn" not in test_node.last_message # Incorrectly responding to a getblocktxn shouldn't cause the block to be # permanently failed. def test_incorrect_blocktxn_response(self, test_node): node = self.nodes[0] utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:6]: assert tx.hash in mempool # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0], use_witness=True) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indexes = [] with p2p_lock: assert "getblocktxn" in test_node.last_message absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [6, 7, 8, 9, 10]) # Now give an incorrect response. # Note that it's possible for bitcoind to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change was made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request test_node.wait_for_getdata([block.sha256], timeout=10) assert test_node.last_message["getdata"].inv[0].type == MSG_BLOCK or \ test_node.last_message["getdata"].inv[0].type == MSG_BLOCK | MSG_WITNESS_FLAG # Deliver the block test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def test_getblocktxn_handler(self, test_node): node = self.nodes[0] # bitcoind will not send blocktxn responses for blocks whose height is # more than 10 blocks deep. MAX_GETBLOCKTXN_DEPTH = 10 chain_height = node.getblockcount() current_height = chain_height while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH): block_hash = node.getblockhash(current_height) block = from_hex(CBlock(), node.getblock(block_hash, False)) msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), []) num_to_request = random.randint(1, len(block.vtx)) msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request))) test_node.send_message(msg) test_node.wait_until(lambda: "blocktxn" in test_node.last_message, timeout=10) [tx.calc_sha256() for tx in block.vtx] with p2p_lock: assert_equal(test_node.last_message["blocktxn"].block_transactions.blockhash, int(block_hash, 16)) all_indices = msg.block_txn_request.to_absolute() for index in all_indices: tx = test_node.last_message["blocktxn"].block_transactions.transactions.pop(0) tx.calc_sha256() assert_equal(tx.sha256, block.vtx[index].sha256) # Check that the witness matches assert_equal(tx.calc_sha256(True), block.vtx[index].calc_sha256(True)) test_node.last_message.pop("blocktxn", None) current_height -= 1 # Next request should send a full block response, as we're past the # allowed depth for a blocktxn response. block_hash = node.getblockhash(current_height) msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0]) with p2p_lock: test_node.last_message.pop("block", None) test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with p2p_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(block_hash, 16)) assert "blocktxn" not in test_node.last_message # Request with out-of-bounds tx index results in disconnect bad_peer = self.nodes[0].add_p2p_connection(TestP2PConn()) block_hash = node.getblockhash(chain_height) block = from_hex(CBlock(), node.getblock(block_hash, False)) msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [len(block.vtx)]) with node.assert_debug_log(['getblocktxn with out-of-bounds tx indices']): bad_peer.send_message(msg) bad_peer.wait_for_disconnect() def test_low_work_compactblocks(self, test_node): # A compactblock with insufficient work won't get its header included node = self.nodes[0] hashPrevBlock = int(node.getblockhash(node.getblockcount() - 150), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) with self.nodes[0].assert_debug_log(['[net] Ignoring low-work compact block from peer 0']): test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: found = True break assert not found def test_compactblocks_not_at_tip(self, test_node): node = self.nodes[0] # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for _ in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(self.generate(node, 1)[0]) test_node.wait_until(test_node.received_block_announcement, timeout=30) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))])) test_node.wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30) test_node.clear_block_announcement() self.generate(node, 1) test_node.wait_until(test_node.received_block_announcement, timeout=30) test_node.clear_block_announcement() with p2p_lock: test_node.last_message.pop("block", None) test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))])) test_node.wait_until(lambda: "block" in test_node.last_message, timeout=30) with p2p_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height - 5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert found # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with p2p_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with p2p_lock: assert "blocktxn" not in test_node.last_message def test_end_to_end_block_relay(self, listeners): node = self.nodes[0] utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) [l.clear_block_announcement() for l in listeners] # serialize without witness (this block has no witnesses anyway). # TODO: repeat this test with witness tx's to a segwit node. node.submitblock(block.serialize().hex()) for l in listeners: l.wait_until(lambda: "cmpctblock" in l.last_message, timeout=30) with p2p_lock: for l in listeners: l.last_message["cmpctblock"].header_and_shortids.header.calc_sha256() assert_equal(l.last_message["cmpctblock"].header_and_shortids.header.sha256, block.sha256) # Test that we don't get disconnected if we relay a compact block with valid header, # but invalid transactions. def test_invalid_tx_in_compactblock(self, test_node): node = self.nodes[0] assert len(self.utxos) utxo = self.utxos[0] block = self.build_block_with_transactions(node, utxo, 5) del block.vtx[3] block.hashMerkleRoot = block.calc_merkle_root() # Drop the coinbase witness but include the witness commitment. add_witness_commitment(block) block.vtx[0].wit.vtxinwit = [] block.solve() # Now send the compact block with all transactions prefilled, and # verify that we don't get disconnected. comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4], use_witness=True) msg = msg_cmpctblock(comp_block.to_p2p()) test_node.send_and_ping(msg) # Check that the tip didn't advance assert int(node.getbestblockhash(), 16) is not block.sha256 test_node.sync_with_ping() # Helper for enabling cb announcements # Send the sendcmpct request and sync headers def request_cb_announcements(self, peer): node = self.nodes[0] tip = node.getbestblockhash() peer.get_headers(locator=[int(tip, 16)], hashstop=0) peer.send_and_ping(msg_sendcmpct(announce=True, version=2)) def test_compactblock_reconstruction_stalling_peer(self, stalling_peer, delivery_peer): node = self.nodes[0] assert len(self.utxos) def announce_cmpct_block(node, peer): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with p2p_lock: assert "getblocktxn" in peer.last_message return block, cmpct_block block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.sha256) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now test that delivering an invalid compact block won't break relay block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() cmpct_block.prefilled_txn[0].tx.wit.vtxinwit = [CTxInWitness()] cmpct_block.prefilled_txn[0].tx.wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(0)] cmpct_block.use_witness = True delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert int(node.getbestblockhash(), 16) != block.sha256 msg = msg_no_witness_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] stalling_peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def test_highbandwidth_mode_states_via_getpeerinfo(self): # create new p2p connection for a fresh state w/o any prior sendcmpct messages sent hb_test_node = self.nodes[0].add_p2p_connection(TestP2PConn()) # assert the RPC getpeerinfo boolean fields `bip152_hb_{to, from}` # match the given parameters for the last peer of a given node def assert_highbandwidth_states(node, hb_to, hb_from): peerinfo = node.getpeerinfo()[-1] assert_equal(peerinfo['bip152_hb_to'], hb_to) assert_equal(peerinfo['bip152_hb_from'], hb_from) # initially, neither node has selected the other peer as high-bandwidth yet assert_highbandwidth_states(self.nodes[0], hb_to=False, hb_from=False) # peer requests high-bandwidth mode by sending sendcmpct(1) hb_test_node.send_and_ping(msg_sendcmpct(announce=True, version=2)) assert_highbandwidth_states(self.nodes[0], hb_to=False, hb_from=True) # peer generates a block and sends it to node, which should # select the peer as high-bandwidth (up to 3 peers according to BIP 152) block = self.build_block_on_tip(self.nodes[0]) hb_test_node.send_and_ping(msg_block(block)) assert_highbandwidth_states(self.nodes[0], hb_to=True, hb_from=True) # peer requests low-bandwidth mode by sending sendcmpct(0) hb_test_node.send_and_ping(msg_sendcmpct(announce=False, version=2)) assert_highbandwidth_states(self.nodes[0], hb_to=True, hb_from=False) def test_compactblock_reconstruction_parallel_reconstruction(self, stalling_peer, delivery_peer, inbound_peer, outbound_peer): """ All p2p connections are inbound except outbound_peer. We test that ultimate parallel slot can only be taken by an outbound node unless prior attempts were done by an outbound """ node = self.nodes[0] assert len(self.utxos) def announce_cmpct_block(node, peer, txn_count): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, txn_count) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with p2p_lock: assert "getblocktxn" in peer.last_message return block, cmpct_block for name, peer in [("delivery", delivery_peer), ("inbound", inbound_peer), ("outbound", outbound_peer)]: self.log.info(f"Setting {name} as high bandwidth peer") block, cmpct_block = announce_cmpct_block(node, peer, 1) msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) peer.clear_getblocktxn() # Test the simple parallel download case... for num_missing in [1, 5, 20]: # Remaining low-bandwidth peer is stalling_peer, who announces first assert_equal([peer['bip152_hb_to'] for peer in node.getpeerinfo()], [False, True, True, True]) block, cmpct_block = announce_cmpct_block(node, stalling_peer, num_missing) delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) with p2p_lock: # The second peer to announce should still get a getblocktxn assert "getblocktxn" in delivery_peer.last_message assert int(node.getbestblockhash(), 16) != block.sha256 inbound_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) with p2p_lock: # The third inbound peer to announce should *not* get a getblocktxn assert "getblocktxn" not in inbound_peer.last_message assert int(node.getbestblockhash(), 16) != block.sha256 outbound_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) with p2p_lock: # The third peer to announce should get a getblocktxn if outbound assert "getblocktxn" in outbound_peer.last_message assert int(node.getbestblockhash(), 16) != block.sha256 # Second peer completes the compact block first msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] delivery_peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) # Nothing bad should happen if we get a late fill from the first peer... stalling_peer.send_and_ping(msg) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) delivery_peer.clear_getblocktxn() inbound_peer.clear_getblocktxn() outbound_peer.clear_getblocktxn() def run_test(self): self.wallet = MiniWallet(self.nodes[0]) # Setup the p2p connections self.segwit_node = self.nodes[0].add_p2p_connection(TestP2PConn()) self.additional_segwit_node = self.nodes[0].add_p2p_connection(TestP2PConn()) self.onemore_inbound_node = self.nodes[0].add_p2p_connection(TestP2PConn()) self.outbound_node = self.nodes[0].add_outbound_p2p_connection(TestP2PConn(), p2p_idx=3, connection_type="outbound-full-relay") # We will need UTXOs to construct transactions in later tests. self.make_utxos() assert softfork_active(self.nodes[0], "segwit") self.log.info("Testing SENDCMPCT p2p message... ") self.test_sendcmpct(self.segwit_node) self.test_sendcmpct(self.additional_segwit_node) self.test_sendcmpct(self.onemore_inbound_node) self.test_sendcmpct(self.outbound_node) self.log.info("Testing compactblock construction...") self.test_compactblock_construction(self.segwit_node) self.log.info("Testing compactblock requests (segwit node)... ") self.test_compactblock_requests(self.segwit_node) self.log.info("Testing getblocktxn requests (segwit node)...") self.test_getblocktxn_requests(self.segwit_node) self.log.info("Testing getblocktxn handler (segwit node should return witnesses)...") self.test_getblocktxn_handler(self.segwit_node) self.log.info("Testing compactblock requests/announcements not at chain tip...") self.test_compactblocks_not_at_tip(self.segwit_node) self.log.info("Testing handling of low-work compact blocks...") self.test_low_work_compactblocks(self.segwit_node) self.log.info("Testing handling of incorrect blocktxn responses...") self.test_incorrect_blocktxn_response(self.segwit_node) self.log.info("Testing reconstructing compact blocks with a stalling peer...") self.test_compactblock_reconstruction_stalling_peer(self.segwit_node, self.additional_segwit_node) self.log.info("Testing reconstructing compact blocks from multiple peers...") self.test_compactblock_reconstruction_parallel_reconstruction(stalling_peer=self.segwit_node, inbound_peer=self.onemore_inbound_node, delivery_peer=self.additional_segwit_node, outbound_peer=self.outbound_node) # Test that if we submitblock to node1, we'll get a compact block # announcement to all peers. # (Post-segwit activation, blocks won't propagate from node0 to node1 # automatically, so don't bother testing a block announced to node0.) self.log.info("Testing end-to-end block relay...") self.request_cb_announcements(self.segwit_node) self.request_cb_announcements(self.additional_segwit_node) self.test_end_to_end_block_relay([self.segwit_node, self.additional_segwit_node]) self.log.info("Testing handling of invalid compact blocks...") self.test_invalid_tx_in_compactblock(self.segwit_node) self.log.info("Testing invalid index in cmpctblock message...") self.test_invalid_cmpctblock_message() self.log.info("Testing high-bandwidth mode states via getpeerinfo...") self.test_highbandwidth_mode_states_via_getpeerinfo() if __name__ == '__main__': CompactBlocksTest(__file__).main()