#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test segwit transactions and blocks on P2P network.""" from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER from test_framework.key import CECKey, CPubKey import time import random from binascii import hexlify # The versionbit bit used to signal activation of SegWit VB_WITNESS_BIT = 1 VB_PERIOD = 144 VB_TOP_BITS = 0x20000000 MAX_SIGOP_COST = 80000 # Calculate the virtual size of a witness block: # (base + witness/4) def get_virtual_size(witness_block): base_size = len(witness_block.serialize()) total_size = len(witness_block.serialize(with_witness=True)) # the "+3" is so we round up vsize = int((3*base_size + total_size + 3)/4) return vsize class TestNode(NodeConnCB): def __init__(self): super().__init__() self.getdataset = set() def on_getdata(self, conn, message): for inv in message.inv: self.getdataset.add(inv.hash) def announce_tx_and_wait_for_getdata(self, tx, timeout=60): with mininode_lock: self.last_message.pop("getdata", None) self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) self.wait_for_getdata(timeout) def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): with mininode_lock: self.last_message.pop("getdata", None) self.last_message.pop("getheaders", None) msg = msg_headers() msg.headers = [ CBlockHeader(block) ] if use_header: self.send_message(msg) else: self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) self.wait_for_getheaders() self.send_message(msg) self.wait_for_getdata() def request_block(self, blockhash, inv_type, timeout=60): with mininode_lock: self.last_message.pop("block", None) self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) self.wait_for_block(blockhash, timeout) return self.last_message["block"].block def test_transaction_acceptance(self, tx, with_witness, accepted, reason=None): tx_message = msg_tx(tx) if with_witness: tx_message = msg_witness_tx(tx) self.send_message(tx_message) self.sync_with_ping() assert_equal(tx.hash in self.connection.rpc.getrawmempool(), accepted) if (reason != None and not accepted): # Check the rejection reason as well. with mininode_lock: assert_equal(self.last_message["reject"].reason, reason) # Test whether a witness block had the correct effect on the tip def test_witness_block(self, block, accepted, with_witness=True): if with_witness: self.send_message(msg_witness_block(block)) else: self.send_message(msg_block(block)) self.sync_with_ping() assert_equal(self.connection.rpc.getbestblockhash() == block.hash, accepted) # Used to keep track of anyone-can-spend outputs that we can use in the tests class UTXO(): def __init__(self, sha256, n, nValue): self.sha256 = sha256 self.n = n self.nValue = nValue # Helper for getting the script associated with a P2PKH def GetP2PKHScript(pubkeyhash): return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) # Add signature for a P2PK witness program. def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key): tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value) signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1') txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script] txTo.rehash() class SegWitTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [["-whitelist=127.0.0.1"], ["-whitelist=127.0.0.1", "-acceptnonstdtxn=0"], ["-whitelist=127.0.0.1", "-vbparams=segwit:0:0"]] def setup_network(self): self.setup_nodes() connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[0], 2) self.sync_all() ''' Helpers ''' # Build a block on top of node0's tip. def build_next_block(self, nVersion=4): tip = self.nodes[0].getbestblockhash() height = self.nodes[0].getblockcount() + 1 block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.nVersion = nVersion block.rehash() return block # Adds list of transactions to block, adds witness commitment, then solves. def update_witness_block_with_transactions(self, block, tx_list, nonce=0): block.vtx.extend(tx_list) add_witness_commitment(block, nonce) block.solve() return ''' Individual tests ''' def test_witness_services(self): self.log.info("Verifying NODE_WITNESS service bit") assert((self.test_node.connection.nServices & NODE_WITNESS) != 0) # See if sending a regular transaction works, and create a utxo # to use in later tests. def test_non_witness_transaction(self): # Mine a block with an anyone-can-spend coinbase, # let it mature, then try to spend it. self.log.info("Testing non-witness transaction") block = self.build_next_block(nVersion=1) block.solve() self.test_node.send_message(msg_block(block)) self.test_node.sync_with_ping() # make sure the block was processed txid = block.vtx[0].sha256 self.nodes[0].generate(99) # let the block mature # Create a transaction that spends the coinbase tx = CTransaction() tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE]))) tx.calc_sha256() # Check that serializing it with or without witness is the same # This is a sanity check of our testing framework. assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize()) self.test_node.send_message(msg_witness_tx(tx)) self.test_node.sync_with_ping() # make sure the tx was processed assert(tx.hash in self.nodes[0].getrawmempool()) # Save this transaction for later self.utxo.append(UTXO(tx.sha256, 0, 49*100000000)) self.nodes[0].generate(1) # Verify that blocks with witnesses are rejected before activation. def test_unnecessary_witness_before_segwit_activation(self): self.log.info("Testing behavior of unnecessary witnesses") # For now, rely on earlier tests to have created at least one utxo for # us to use assert(len(self.utxo) > 0) assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active') tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] # Verify the hash with witness differs from the txid # (otherwise our testing framework must be broken!) tx.rehash() assert(tx.sha256 != tx.calc_sha256(with_witness=True)) # Construct a segwit-signaling block that includes the transaction. block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT))) self.update_witness_block_with_transactions(block, [tx]) # Sending witness data before activation is not allowed (anti-spam # rule). self.test_node.test_witness_block(block, accepted=False) # TODO: fix synchronization so we can test reject reason # Right now, bitcoind delays sending reject messages for blocks # until the future, making synchronization here difficult. #assert_equal(self.test_node.last_message["reject"].reason, "unexpected-witness") # But it should not be permanently marked bad... # Resend without witness information. self.test_node.send_message(msg_block(block)) self.test_node.sync_with_ping() assert_equal(self.nodes[0].getbestblockhash(), block.hash) sync_blocks(self.nodes) # Create a p2sh output -- this is so we can pass the standardness # rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped # in P2SH). p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # Now check that unnecessary witnesses can't be used to blind a node # to a transaction, eg by violating standardness checks. tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey)) tx2.rehash() self.test_node.test_transaction_acceptance(tx2, False, True) self.nodes[0].generate(1) sync_blocks(self.nodes) # We'll add an unnecessary witness to this transaction that would cause # it to be non-standard, to test that violating policy with a witness before # segwit activation doesn't blind a node to a transaction. Transactions # rejected for having a witness before segwit activation shouldn't be added # to the rejection cache. tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program]))) tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptPubKey)) tx3.wit.vtxinwit.append(CTxInWitness()) tx3.wit.vtxinwit[0].scriptWitness.stack = [b'a'*400000] tx3.rehash() # Note that this should be rejected for the premature witness reason, # rather than a policy check, since segwit hasn't activated yet. self.std_node.test_transaction_acceptance(tx3, True, False, b'no-witness-yet') # If we send without witness, it should be accepted. self.std_node.test_transaction_acceptance(tx3, False, True) # Now create a new anyone-can-spend utxo for the next test. tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), CScript([p2sh_program]))) tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, CScript([OP_TRUE]))) tx4.rehash() self.test_node.test_transaction_acceptance(tx3, False, True) self.test_node.test_transaction_acceptance(tx4, False, True) self.nodes[0].generate(1) sync_blocks(self.nodes) # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx4.sha256, 0, tx4.vout[0].nValue)) # Mine enough blocks for segwit's vb state to be 'started'. def advance_to_segwit_started(self): height = self.nodes[0].getblockcount() # Will need to rewrite the tests here if we are past the first period assert(height < VB_PERIOD - 1) # Genesis block is 'defined'. assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined') # Advance to end of period, status should now be 'started' self.nodes[0].generate(VB_PERIOD-height-1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') # Mine enough blocks to lock in segwit, but don't activate. # TODO: we could verify that lockin only happens at the right threshold of # signalling blocks, rather than just at the right period boundary. def advance_to_segwit_lockin(self): height = self.nodes[0].getblockcount() assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') # Advance to end of period, and verify lock-in happens at the end self.nodes[0].generate(VB_PERIOD-1) height = self.nodes[0].getblockcount() assert((height % VB_PERIOD) == VB_PERIOD - 2) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') self.nodes[0].generate(1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') # Mine enough blocks to activate segwit. # TODO: we could verify that activation only happens at the right threshold # of signalling blocks, rather than just at the right period boundary. def advance_to_segwit_active(self): assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') height = self.nodes[0].getblockcount() self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') self.nodes[0].generate(1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active') # This test can only be run after segwit has activated def test_witness_commitments(self): self.log.info("Testing witness commitments") # First try a correct witness commitment. block = self.build_next_block() add_witness_commitment(block) block.solve() # Test the test -- witness serialization should be different assert(msg_witness_block(block).serialize() != msg_block(block).serialize()) # This empty block should be valid. self.test_node.test_witness_block(block, accepted=True) # Try to tweak the nonce block_2 = self.build_next_block() add_witness_commitment(block_2, nonce=28) block_2.solve() # The commitment should have changed! assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1]) # This should also be valid. self.test_node.test_witness_block(block_2, accepted=True) # Now test commitments with actual transactions assert (len(self.utxo) > 0) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # Let's construct a witness program witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) tx.rehash() # tx2 will spend tx1, and send back to a regular anyone-can-spend address tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) # Add an extra OP_RETURN output that matches the witness commitment template, # even though it has extra data after the incorrect commitment. # This block should fail. block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() block_3.solve() self.test_node.test_witness_block(block_3, accepted=False) # Add a different commitment with different nonce, but in the # right location, and with some funds burned(!). # This should succeed (nValue shouldn't affect finding the # witness commitment). add_witness_commitment(block_3, nonce=0) block_3.vtx[0].vout[0].nValue -= 1 block_3.vtx[0].vout[-1].nValue += 1 block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns block_3.solve() self.test_node.test_witness_block(block_3, accepted=True) # Finally test that a block with no witness transactions can # omit the commitment. block_4 = self.build_next_block() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) tx3.rehash() block_4.vtx.append(tx3) block_4.hashMerkleRoot = block_4.calc_merkle_root() block_4.solve() self.test_node.test_witness_block(block_4, with_witness=False, accepted=True) # Update available utxo's for use in later test. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) def test_block_malleability(self): self.log.info("Testing witness block malleability") # Make sure that a block that has too big a virtual size # because of a too-large coinbase witness is not permanently # marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000) assert(get_virtual_size(block) > MAX_BLOCK_BASE_SIZE) # We can't send over the p2p network, because this is too big to relay # TODO: repeat this test with a block that can be relayed self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() != block.hash) block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() assert(get_virtual_size(block) < MAX_BLOCK_BASE_SIZE) self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() == block.hash) # Now make sure that malleating the witness nonce doesn't # result in a block permanently marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() # Change the nonce -- should not cause the block to be permanently # failed block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ] self.test_node.test_witness_block(block, accepted=False) # Changing the witness nonce doesn't change the block hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ] self.test_node.test_witness_block(block, accepted=True) def test_witness_block_size(self): self.log.info("Testing witness block size limit") # TODO: Test that non-witness carrying blocks can't exceed 1MB # Skipping this test for now; this is covered in p2p-fullblocktest.py # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. block = self.build_next_block() assert(len(self.utxo) > 0) # Create a P2WSH transaction. # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. # This should give us plenty of room to tweak the spending tx's # virtual size. NUM_DROPS = 200 # 201 max ops per script! NUM_OUTPUTS = 50 witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE]) witness_hash = uint256_from_str(sha256(witness_program)) scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)]) prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) value = self.utxo[0].nValue parent_tx = CTransaction() parent_tx.vin.append(CTxIn(prevout, b"")) child_value = int(value/NUM_OUTPUTS) for i in range(NUM_OUTPUTS): parent_tx.vout.append(CTxOut(child_value, scriptPubKey)) parent_tx.vout[0].nValue -= 50000 assert(parent_tx.vout[0].nValue > 0) parent_tx.rehash() child_tx = CTransaction() for i in range(NUM_OUTPUTS): child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] for i in range(NUM_OUTPUTS): child_tx.wit.vtxinwit.append(CTxInWitness()) child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program] child_tx.rehash() self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) vsize = get_virtual_size(block) additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize)*4 i = 0 while additional_bytes > 0: # Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1 extra_bytes = min(additional_bytes+1, 55) block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes) additional_bytes -= extra_bytes i += 1 block.vtx[0].vout.pop() # Remove old commitment add_witness_commitment(block) block.solve() vsize = get_virtual_size(block) assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1) # Make sure that our test case would exceed the old max-network-message # limit assert(len(block.serialize(True)) > 2*1024*1024) self.test_node.test_witness_block(block, accepted=False) # Now resize the second transaction to make the block fit. cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1) block.vtx[0].vout.pop() add_witness_commitment(block) block.solve() assert(get_virtual_size(block) == MAX_BLOCK_BASE_SIZE) self.test_node.test_witness_block(block, accepted=True) # Update available utxo's self.utxo.pop(0) self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) # submitblock will try to add the nonce automatically, so that mining # software doesn't need to worry about doing so itself. def test_submit_block(self): block = self.build_next_block() # Try using a custom nonce and then don't supply it. # This shouldn't possibly work. add_witness_commitment(block, nonce=1) block.vtx[0].wit = CTxWitness() # drop the nonce block.solve() self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() != block.hash) # Now redo commitment with the standard nonce, but let bitcoind fill it in. add_witness_commitment(block, nonce=0) block.vtx[0].wit = CTxWitness() block.solve() self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert_equal(self.nodes[0].getbestblockhash(), block.hash) # This time, add a tx with non-empty witness, but don't supply # the commitment. block_2 = self.build_next_block() add_witness_commitment(block_2) block_2.solve() # Drop commitment and nonce -- submitblock should not fill in. block_2.vtx[0].vout.pop() block_2.vtx[0].wit = CTxWitness() self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True))) # Tip should not advance! assert(self.nodes[0].getbestblockhash() != block_2.hash) # Consensus tests of extra witness data in a transaction. def test_extra_witness_data(self): self.log.info("Testing extra witness data in tx") assert(len(self.utxo) > 0) block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # First try extra witness data on a tx that doesn't require a witness tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey)) tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] tx.rehash() self.update_witness_block_with_transactions(block, [tx]) # Extra witness data should not be allowed. self.test_node.test_witness_block(block, accepted=False) # Try extra signature data. Ok if we're not spending a witness output. block.vtx[1].wit.vtxinwit = [] block.vtx[1].vin[0].scriptSig = CScript([OP_0]) block.vtx[1].rehash() add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Now try extra witness/signature data on an input that DOES require a # witness tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()]) tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ] tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) # This has extra witness data, so it should fail. self.test_node.test_witness_block(block, accepted=False) # Now get rid of the extra witness, but add extra scriptSig data tx2.vin[0].scriptSig = CScript([OP_TRUE]) tx2.vin[1].scriptSig = CScript([OP_TRUE]) tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) tx2.wit.vtxinwit[1].scriptWitness.stack = [] tx2.rehash() add_witness_commitment(block) block.solve() # This has extra signature data for a witness input, so it should fail. self.test_node.test_witness_block(block, accepted=False) # Now get rid of the extra scriptsig on the witness input, and verify # success (even with extra scriptsig data in the non-witness input) tx2.vin[0].scriptSig = b"" tx2.rehash() add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Update utxo for later tests self.utxo.pop(0) self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_max_witness_push_length(self): ''' Should only allow up to 520 byte pushes in witness stack ''' self.log.info("Testing maximum witness push size") MAX_SCRIPT_ELEMENT_SIZE = 520 assert(len(self.utxo)) block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) # First try a 521-byte stack element tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Now reduce the length of the stack element tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE) add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Update the utxo for later tests self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_max_witness_program_length(self): # Can create witness outputs that are long, but can't be greater than # 10k bytes to successfully spend self.log.info("Testing maximum witness program length") assert(len(self.utxo)) MAX_PROGRAM_LENGTH = 10000 # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE]) assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1) long_witness_hash = sha256(long_witness_program) long_scriptPubKey = CScript([OP_0, long_witness_hash]) block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Try again with one less byte in the witness program witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE]) assert(len(witness_program) == MAX_PROGRAM_LENGTH) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey) tx.rehash() tx2.vin[0].prevout.hash = tx.sha256 tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program] tx2.rehash() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_witness_input_length(self): ''' Ensure that vin length must match vtxinwit length ''' self.log.info("Testing witness input length") assert(len(self.utxo)) witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # Create a transaction that splits our utxo into many outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) nValue = self.utxo[0].nValue for i in range(10): tx.vout.append(CTxOut(int(nValue/10), scriptPubKey)) tx.vout[0].nValue -= 1000 assert(tx.vout[0].nValue >= 0) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) # Try various ways to spend tx that should all break. # This "broken" transaction serializer will not normalize # the length of vtxinwit. class BrokenCTransaction(CTransaction): def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack(" version 1 transactions # are non-standard scriptPubKey = CScript([CScriptOp(OP_1), witness_hash]) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] tx2.rehash() # Gets accepted to test_node, because standardness of outputs isn't # checked with fRequireStandard self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False) temp_utxo.pop() # last entry in temp_utxo was the output we just spent temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) # Spend everything in temp_utxo back to an OP_TRUE output. tx3 = CTransaction() total_value = 0 for i in temp_utxo: tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) total_value += i.nValue tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE]))) tx3.rehash() # Spending a higher version witness output is not allowed by policy, # even with fRequireStandard=false. self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) self.test_node.sync_with_ping() with mininode_lock: assert(b"reserved for soft-fork upgrades" in self.test_node.last_message["reject"].reason) # Building a block with the transaction must be valid, however. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2, tx3]) self.test_node.test_witness_block(block, accepted=True) sync_blocks(self.nodes) # Add utxo to our list self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) def test_premature_coinbase_witness_spend(self): self.log.info("Testing premature coinbase witness spend") block = self.build_next_block() # Change the output of the block to be a witness output. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) block.vtx[0].vout[0].scriptPubKey = scriptPubKey # This next line will rehash the coinbase and update the merkle # root, and solve. self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) spend_tx = CTransaction() spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] spend_tx.rehash() # Now test a premature spend. self.nodes[0].generate(98) sync_blocks(self.nodes) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) self.test_node.test_witness_block(block2, accepted=False) # Advancing one more block should allow the spend. self.nodes[0].generate(1) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) self.test_node.test_witness_block(block2, accepted=True) sync_blocks(self.nodes) def test_signature_version_1(self): self.log.info("Testing segwit signature hash version 1") key = CECKey() key.set_secretbytes(b"9") pubkey = CPubKey(key.get_pubkey()) witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # First create a witness output for use in the tests. assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) tx.rehash() self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) # Mine this transaction in preparation for following tests. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) sync_blocks(self.nodes) self.utxo.pop(0) # Test each hashtype prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) for sigflag in [ 0, SIGHASH_ANYONECANPAY ]: for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: hashtype |= sigflag block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey)) tx.wit.vtxinwit.append(CTxInWitness()) # Too-large input value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key) self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=False) # Too-small input value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key) block.vtx.pop() # remove last tx self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=False) # Now try correct value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) block.vtx.pop() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) # Test combinations of signature hashes. # Split the utxo into a lot of outputs. # Randomly choose up to 10 to spend, sign with different hashtypes, and # output to a random number of outputs. Repeat NUM_TESTS times. # Ensure that we've tested a situation where we use SIGHASH_SINGLE with # an input index > number of outputs. NUM_TESTS = 500 temp_utxos = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) split_value = prev_utxo.nValue // NUM_TESTS for i in range(NUM_TESTS): tx.vout.append(CTxOut(split_value, scriptPubKey)) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) for i in range(NUM_TESTS): temp_utxos.append(UTXO(tx.sha256, i, split_value)) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) block = self.build_next_block() used_sighash_single_out_of_bounds = False for i in range(NUM_TESTS): # Ping regularly to keep the connection alive if (not i % 100): self.test_node.sync_with_ping() # Choose random number of inputs to use. num_inputs = random.randint(1, 10) # Create a slight bias for producing more utxos num_outputs = random.randint(1, 11) random.shuffle(temp_utxos) assert(len(temp_utxos) > num_inputs) tx = CTransaction() total_value = 0 for i in range(num_inputs): tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) total_value += temp_utxos[i].nValue split_value = total_value // num_outputs for i in range(num_outputs): tx.vout.append(CTxOut(split_value, scriptPubKey)) for i in range(num_inputs): # Now try to sign each input, using a random hashtype. anyonecanpay = 0 if random.randint(0, 1): anyonecanpay = SIGHASH_ANYONECANPAY hashtype = random.randint(1, 3) | anyonecanpay sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) if (hashtype == SIGHASH_SINGLE and i >= num_outputs): used_sighash_single_out_of_bounds = True tx.rehash() for i in range(num_outputs): temp_utxos.append(UTXO(tx.sha256, i, split_value)) temp_utxos = temp_utxos[num_inputs:] block.vtx.append(tx) # Test the block periodically, if we're close to maxblocksize if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000): self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) block = self.build_next_block() if (not used_sighash_single_out_of_bounds): self.log.info("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") # Test the transactions we've added to the block if (len(block.vtx) > 1): self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) # Now test witness version 0 P2PKH transactions pubkeyhash = hash160(pubkey) scriptPKH = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH)) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) script = GetP2PKHScript(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL # Check that we can't have a scriptSig tx2.vin[0].scriptSig = CScript([signature, pubkey]) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Move the signature to the witness. block.vtx.pop() tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.vin[0].scriptSig = b"" tx2.rehash() self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=True) temp_utxos.pop(0) # Update self.utxos for later tests. Just spend everything in # temp_utxos to a corresponding entry in self.utxos tx = CTransaction() index = 0 for i in temp_utxos: # Just spend to our usual anyone-can-spend output # Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up # the signatures as we go. tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key) index += 1 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) for i in range(len(tx.vout)): self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) # Test P2SH wrapped witness programs. def test_p2sh_witness(self, segwit_activated): self.log.info("Testing P2SH witness transactions") assert(len(self.utxo)) # Prepare the p2sh-wrapped witness output witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) p2wsh_pubkey = CScript([OP_0, witness_hash]) p2sh_witness_hash = hash160(p2wsh_pubkey) scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script # Fund the P2SH output tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) tx.rehash() # Verify mempool acceptance and block validity self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated) sync_blocks(self.nodes) # Now test attempts to spend the output. spend_tx = CTransaction() spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig)) spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) spend_tx.rehash() # This transaction should not be accepted into the mempool pre- or # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which # will require a witness to spend a witness program regardless of # segwit activation. Note that older bitcoind's that are not # segwit-aware would also reject this for failing CLEANSTACK. self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) # Try to put the witness script in the scriptSig, should also fail. spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) spend_tx.rehash() self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) # Now put the witness script in the witness, should succeed after # segwit activates. spend_tx.vin[0].scriptSig = scriptSig spend_tx.rehash() spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ] # Verify mempool acceptance self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated) block = self.build_next_block() self.update_witness_block_with_transactions(block, [spend_tx]) # If we're before activation, then sending this without witnesses # should be valid. If we're after activation, then sending this with # witnesses should be valid. if segwit_activated: self.test_node.test_witness_block(block, accepted=True) else: self.test_node.test_witness_block(block, accepted=True, with_witness=False) # Update self.utxo self.utxo.pop(0) self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) # Test the behavior of starting up a segwit-aware node after the softfork # has activated. As segwit requires different block data than pre-segwit # nodes would have stored, this requires special handling. # To enable this test, pass --oldbinary= to # the test. def test_upgrade_after_activation(self, node_id): self.log.info("Testing software upgrade after softfork activation") assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind # Make sure the nodes are all up sync_blocks(self.nodes) # Restart with the new binary self.stop_node(node_id) self.start_node(node_id, extra_args=[]) connect_nodes(self.nodes[0], node_id) sync_blocks(self.nodes) # Make sure that this peer thinks segwit has activated. assert(get_bip9_status(self.nodes[node_id], 'segwit')['status'] == "active") # Make sure this peers blocks match those of node0. height = self.nodes[node_id].getblockcount() while height >= 0: block_hash = self.nodes[node_id].getblockhash(height) assert_equal(block_hash, self.nodes[0].getblockhash(height)) assert_equal(self.nodes[0].getblock(block_hash), self.nodes[node_id].getblock(block_hash)) height -= 1 def test_witness_sigops(self): '''Ensure sigop counting is correct inside witnesses.''' self.log.info("Testing sigops limit") assert(len(self.utxo)) # Keep this under MAX_OPS_PER_SCRIPT (201) witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) sigops_per_script = 20*5 + 193*1 # We'll produce 2 extra outputs, one with a program that would take us # over max sig ops, and one with a program that would exactly reach max # sig ops outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 extra_sigops_available = MAX_SIGOP_COST % sigops_per_script # We chose the number of checkmultisigs/checksigs to make this work: assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT # This script, when spent with the first # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, # would push us just over the block sigop limit. witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF]) witness_hash_toomany = sha256(witness_program_toomany) scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany]) # If we spend this script instead, we would exactly reach our sigop # limit (for witness sigops). witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF]) witness_hash_justright = sha256(witness_program_justright) scriptPubKey_justright = CScript([OP_0, witness_hash_justright]) # First split our available utxo into a bunch of outputs split_value = self.utxo[0].nValue // outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) for i in range(outputs): tx.vout.append(CTxOut(split_value, scriptPubKey)) tx.vout[-2].scriptPubKey = scriptPubKey_toomany tx.vout[-1].scriptPubKey = scriptPubKey_justright tx.rehash() block_1 = self.build_next_block() self.update_witness_block_with_transactions(block_1, [tx]) self.test_node.test_witness_block(block_1, accepted=True) tx2 = CTransaction() # If we try to spend the first n-1 outputs from tx, that should be # too many sigops. total_value = 0 for i in range(outputs-1): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ] total_value += tx.vout[i].nValue tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ] tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) tx2.rehash() block_2 = self.build_next_block() self.update_witness_block_with_transactions(block_2, [tx2]) self.test_node.test_witness_block(block_2, accepted=False) # Try dropping the last input in tx2, and add an output that has # too many sigops (contributing to legacy sigop count). checksig_count = (extra_sigops_available // 4) + 1 scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count) tx2.vout.append(CTxOut(0, scriptPubKey_checksigs)) tx2.vin.pop() tx2.wit.vtxinwit.pop() tx2.vout[0].nValue -= tx.vout[-2].nValue tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx2]) self.test_node.test_witness_block(block_3, accepted=False) # If we drop the last checksig in this output, the tx should succeed. block_4 = self.build_next_block() tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1)) tx2.rehash() self.update_witness_block_with_transactions(block_4, [tx2]) self.test_node.test_witness_block(block_4, accepted=True) # Reset the tip back down for the next test sync_blocks(self.nodes) for x in self.nodes: x.invalidateblock(block_4.hash) # Try replacing the last input of tx2 to be spending the last # output of tx block_5 = self.build_next_block() tx2.vout.pop() tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ] tx2.rehash() self.update_witness_block_with_transactions(block_5, [tx2]) self.test_node.test_witness_block(block_5, accepted=True) # TODO: test p2sh sigop counting def test_getblocktemplate_before_lockin(self): self.log.info("Testing getblocktemplate setting of segwit versionbit (before lockin)") # Node0 is segwit aware, node2 is not. for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate() block_version = gbt_results['version'] # If we're not indicating segwit support, we will still be # signalling for segwit activation. assert_equal((block_version & (1 << VB_WITNESS_BIT) != 0), node == self.nodes[0]) # If we don't specify the segwit rule, then we won't get a default # commitment. assert('default_witness_commitment' not in gbt_results) # Workaround: # Can either change the tip, or change the mempool and wait 5 seconds # to trigger a recomputation of getblocktemplate. txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16) # Using mocktime lets us avoid sleep() sync_mempools(self.nodes) self.nodes[0].setmocktime(int(time.time())+10) self.nodes[2].setmocktime(int(time.time())+10) for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate({"rules" : ["segwit"]}) block_version = gbt_results['version'] if node == self.nodes[2]: # If this is a non-segwit node, we should still not get a witness # commitment, nor a version bit signalling segwit. assert_equal(block_version & (1 << VB_WITNESS_BIT), 0) assert('default_witness_commitment' not in gbt_results) else: # For segwit-aware nodes, check the version bit and the witness # commitment are correct. assert(block_version & (1 << VB_WITNESS_BIT) != 0) assert('default_witness_commitment' in gbt_results) witness_commitment = gbt_results['default_witness_commitment'] # Check that default_witness_commitment is present. witness_root = CBlock.get_merkle_root([ser_uint256(0), ser_uint256(txid)]) script = get_witness_script(witness_root, 0) assert_equal(witness_commitment, bytes_to_hex_str(script)) # undo mocktime self.nodes[0].setmocktime(0) self.nodes[2].setmocktime(0) # Uncompressed pubkeys are no longer supported in default relay policy, # but (for now) are still valid in blocks. def test_uncompressed_pubkey(self): self.log.info("Testing uncompressed pubkeys") # Segwit transactions using uncompressed pubkeys are not accepted # under default policy, but should still pass consensus. key = CECKey() key.set_secretbytes(b"9") key.set_compressed(False) pubkey = CPubKey(key.get_pubkey()) assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey assert(len(self.utxo) > 0) utxo = self.utxo.pop(0) # Test 1: P2WPKH # First create a P2WPKH output that uses an uncompressed pubkey pubkeyhash = hash160(pubkey) scriptPKH = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b"")) tx.vout.append(CTxOut(utxo.nValue-1000, scriptPKH)) tx.rehash() # Confirm it in a block. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) # Now try to spend it. Send it to a P2WSH output, which we'll # use in the next test. witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) scriptWSH = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptWSH)) script = GetP2PKHScript(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [ signature, pubkey ] tx2.rehash() # Should fail policy test. self.test_node.test_transaction_acceptance(tx2, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=True) # Test 2: P2WSH # Try to spend the P2WSH output created in last test. # Send it to a P2SH(P2WSH) output, which we'll use in the next test. p2sh_witness_hash = hash160(scriptWSH) scriptP2SH = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) scriptSig = CScript([scriptWSH]) tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptP2SH)) tx3.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key) # Should fail policy test. self.test_node.test_transaction_acceptance(tx3, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx3]) self.test_node.test_witness_block(block, accepted=True) # Test 3: P2SH(P2WSH) # Try to spend the P2SH output created in the last test. # Send it to a P2PKH output, which we'll use in the next test. scriptPubKey = GetP2PKHScript(pubkeyhash) tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), scriptSig)) tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, scriptPubKey)) tx4.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key) # Should fail policy test. self.test_node.test_transaction_acceptance(tx4, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx4]) self.test_node.test_witness_block(block, accepted=True) # Test 4: Uncompressed pubkeys should still be valid in non-segwit # transactions. tx5 = CTransaction() tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b"")) tx5.vout.append(CTxOut(tx4.vout[0].nValue-1000, CScript([OP_TRUE]))) (sig_hash, err) = SignatureHash(scriptPubKey, tx5, 0, SIGHASH_ALL) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx5.vin[0].scriptSig = CScript([signature, pubkey]) tx5.rehash() # Should pass policy and consensus. self.test_node.test_transaction_acceptance(tx5, True, True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx5]) self.test_node.test_witness_block(block, accepted=True) self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue)) def test_non_standard_witness(self): self.log.info("Testing detection of non-standard P2WSH witness") pad = chr(1).encode('latin-1') # Create scripts for tests scripts = [] scripts.append(CScript([OP_DROP] * 100)) scripts.append(CScript([OP_DROP] * 99)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61)) p2wsh_scripts = [] assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # For each script, generate a pair of P2WSH and P2SH-P2WSH output. outputvalue = (self.utxo[0].nValue - 1000) // (len(scripts) * 2) for i in scripts: p2wsh = CScript([OP_0, sha256(i)]) p2sh = hash160(p2wsh) p2wsh_scripts.append(p2wsh) tx.vout.append(CTxOut(outputvalue, p2wsh)) tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL]))) tx.rehash() txid = tx.sha256 self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) self.nodes[0].generate(1) sync_blocks(self.nodes) # Creating transactions for tests p2wsh_txs = [] p2sh_txs = [] for i in range(len(scripts)): p2wsh_tx = CTransaction() p2wsh_tx.vin.append(CTxIn(COutPoint(txid,i*2))) p2wsh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.rehash() p2wsh_txs.append(p2wsh_tx) p2sh_tx = CTransaction() p2sh_tx.vin.append(CTxIn(COutPoint(txid,i*2+1), CScript([p2wsh_scripts[i]]))) p2sh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2sh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_tx.rehash() p2sh_txs.append(p2sh_tx) # Testing native P2WSH # Witness stack size, excluding witnessScript, over 100 is non-standard p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] self.std_node.test_transaction_acceptance(p2wsh_txs[0], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[0], True, True) # Stack element size over 80 bytes is non-standard p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[1], True, True) # Standard nodes should accept if element size is not over 80 bytes p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, True) # witnessScript size at 3600 bytes is standard p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] self.test_node.test_transaction_acceptance(p2wsh_txs[2], True, True) self.std_node.test_transaction_acceptance(p2wsh_txs[2], True, True) # witnessScript size at 3601 bytes is non-standard p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] self.std_node.test_transaction_acceptance(p2wsh_txs[3], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[3], True, True) # Repeating the same tests with P2SH-P2WSH p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] self.std_node.test_transaction_acceptance(p2sh_txs[0], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[0], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2sh_txs[1], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[1], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2sh_txs[1], True, True) p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] self.test_node.test_transaction_acceptance(p2sh_txs[2], True, True) self.std_node.test_transaction_acceptance(p2sh_txs[2], True, True) p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] self.std_node.test_transaction_acceptance(p2sh_txs[3], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[3], True, True) self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node # Valid but non-standard transactions in a block should be accepted by standard node sync_blocks(self.nodes) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) self.utxo.pop(0) def run_test(self): # Setup the p2p connections and start up the network thread. self.test_node = TestNode() # sets NODE_WITNESS|NODE_NETWORK self.old_node = TestNode() # only NODE_NETWORK self.std_node = TestNode() # for testing node1 (fRequireStandard=true) self.p2p_connections = [self.test_node, self.old_node] self.connections = [] self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node, services=NODE_NETWORK|NODE_WITNESS)) self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.old_node, services=NODE_NETWORK)) self.connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.std_node, services=NODE_NETWORK|NODE_WITNESS)) self.test_node.add_connection(self.connections[0]) self.old_node.add_connection(self.connections[1]) self.std_node.add_connection(self.connections[2]) NetworkThread().start() # Start up network handling in another thread # Keep a place to store utxo's that can be used in later tests self.utxo = [] # Test logic begins here self.test_node.wait_for_verack() self.log.info("Starting tests before segwit lock in:") self.test_witness_services() # Verifies NODE_WITNESS self.test_non_witness_transaction() # non-witness tx's are accepted self.test_unnecessary_witness_before_segwit_activation() self.test_block_relay(segwit_activated=False) # Advance to segwit being 'started' self.advance_to_segwit_started() sync_blocks(self.nodes) self.test_getblocktemplate_before_lockin() sync_blocks(self.nodes) # At lockin, nothing should change. self.log.info("Testing behavior post lockin, pre-activation") self.advance_to_segwit_lockin() # Retest unnecessary witnesses self.test_unnecessary_witness_before_segwit_activation() self.test_witness_tx_relay_before_segwit_activation() self.test_block_relay(segwit_activated=False) self.test_p2sh_witness(segwit_activated=False) self.test_standardness_v0(segwit_activated=False) sync_blocks(self.nodes) # Now activate segwit self.log.info("Testing behavior after segwit activation") self.advance_to_segwit_active() sync_blocks(self.nodes) # Test P2SH witness handling again self.test_p2sh_witness(segwit_activated=True) self.test_witness_commitments() self.test_block_malleability() self.test_witness_block_size() self.test_submit_block() self.test_extra_witness_data() self.test_max_witness_push_length() self.test_max_witness_program_length() self.test_witness_input_length() self.test_block_relay(segwit_activated=True) self.test_tx_relay_after_segwit_activation() self.test_standardness_v0(segwit_activated=True) self.test_segwit_versions() self.test_premature_coinbase_witness_spend() self.test_uncompressed_pubkey() self.test_signature_version_1() self.test_non_standard_witness() sync_blocks(self.nodes) self.test_upgrade_after_activation(node_id=2) self.test_witness_sigops() if __name__ == '__main__': SegWitTest().main()