#!/usr/bin/env python3 # Copyright (c) 2014-2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the pruning code. WARNING: This test uses 4GB of disk space. This test takes 30 mins or more (up to 2 hours) """ import os from test_framework.blocktools import ( MIN_BLOCKS_TO_KEEP, create_block, create_coinbase, ) from test_framework.script import ( CScript, OP_NOP, OP_RETURN, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, try_rpc, ) # Rescans start at the earliest block up to 2 hours before a key timestamp, so # the manual prune RPC avoids pruning blocks in the same window to be # compatible with pruning based on key creation time. TIMESTAMP_WINDOW = 2 * 60 * 60 def mine_large_blocks(node, n): # Make a large scriptPubKey for the coinbase transaction. This is OP_RETURN # followed by 950k of OP_NOP. This would be non-standard in a non-coinbase # transaction but is consensus valid. # Set the nTime if this is the first time this function has been called. # A static variable ensures that time is monotonicly increasing and is therefore # different for each block created => blockhash is unique. if "nTimes" not in mine_large_blocks.__dict__: mine_large_blocks.nTime = 0 # Get the block parameters for the first block big_script = CScript([OP_RETURN] + [OP_NOP] * 950000) best_block = node.getblock(node.getbestblockhash()) height = int(best_block["height"]) + 1 mine_large_blocks.nTime = max(mine_large_blocks.nTime, int(best_block["time"])) + 1 previousblockhash = int(best_block["hash"], 16) for _ in range(n): block = create_block(hashprev=previousblockhash, ntime=mine_large_blocks.nTime, coinbase=create_coinbase(height, script_pubkey=big_script)) block.solve() # Submit to the node node.submitblock(block.serialize().hex()) previousblockhash = block.sha256 height += 1 mine_large_blocks.nTime += 1 def calc_usage(blockdir): return sum(os.path.getsize(blockdir + f) for f in os.listdir(blockdir) if os.path.isfile(os.path.join(blockdir, f))) / (1024. * 1024.) class PruneTest(BitcoinTestFramework): def add_options(self, parser): self.add_wallet_options(parser) def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 6 self.supports_cli = False # Create nodes 0 and 1 to mine. # Create node 2 to test pruning. self.full_node_default_args = ["-maxreceivebuffer=20000", "-checkblocks=5"] # Create nodes 3 and 4 to test manual pruning (they will be re-started with manual pruning later) # Create nodes 5 to test wallet in prune mode, but do not connect self.extra_args = [ self.full_node_default_args, self.full_node_default_args, ["-maxreceivebuffer=20000", "-prune=550"], ["-maxreceivebuffer=20000"], ["-maxreceivebuffer=20000"], ["-prune=550", "-blockfilterindex=1"], ] self.rpc_timeout = 120 def setup_network(self): self.setup_nodes() self.prunedir = os.path.join(self.nodes[2].blocks_path, '') self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.connect_nodes(0, 2) self.connect_nodes(0, 3) self.connect_nodes(0, 4) self.sync_blocks(self.nodes[0:5]) def setup_nodes(self): self.add_nodes(self.num_nodes, self.extra_args) self.start_nodes() if self.is_wallet_compiled(): self.import_deterministic_coinbase_privkeys() def create_big_chain(self): # Start by creating some coinbases we can spend later self.generate(self.nodes[1], 200, sync_fun=lambda: self.sync_blocks(self.nodes[0:2])) self.generate(self.nodes[0], 150, sync_fun=self.no_op) # Then mine enough full blocks to create more than 550MiB of data mine_large_blocks(self.nodes[0], 645) self.sync_blocks(self.nodes[0:5]) def test_invalid_command_line_options(self): self.stop_node(0) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune cannot be configured with a negative value.', extra_args=['-prune=-1'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune configured below the minimum of 550 MiB. Please use a higher number.', extra_args=['-prune=549'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -txindex.', extra_args=['-prune=550', '-txindex'], ) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Prune mode is incompatible with -reindex-chainstate. Use full -reindex instead.', extra_args=['-prune=550', '-reindex-chainstate'], ) def test_rescan_blockchain(self): self.restart_node(0, ["-prune=550"]) assert_raises_rpc_error(-1, "Can't rescan beyond pruned data. Use RPC call getblockchaininfo to determine your pruned height.", self.nodes[0].rescanblockchain) def test_height_min(self): assert os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), "blk00000.dat is missing, pruning too early" self.log.info("Success") self.log.info(f"Though we're already using more than 550MiB, current usage: {calc_usage(self.prunedir)}") self.log.info("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this mine_large_blocks(self.nodes[0], 25) # Wait for blk00000.dat to be pruned self.wait_until(lambda: not os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), timeout=30) self.log.info("Success") usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def create_chain_with_staleblocks(self): # Create stale blocks in manageable sized chunks self.log.info("Mine 24 (stale) blocks on Node 1, followed by 25 (main chain) block reorg from Node 0, for 12 rounds") for _ in range(12): # Disconnect node 0 so it can mine a longer reorg chain without knowing about node 1's soon-to-be-stale chain # Node 2 stays connected, so it hears about the stale blocks and then reorg's when node0 reconnects self.disconnect_nodes(0, 1) self.disconnect_nodes(0, 2) # Mine 24 blocks in node 1 mine_large_blocks(self.nodes[1], 24) # Reorg back with 25 block chain from node 0 mine_large_blocks(self.nodes[0], 25) # Create connections in the order so both nodes can see the reorg at the same time self.connect_nodes(0, 1) self.connect_nodes(0, 2) self.sync_blocks(self.nodes[0:3]) self.log.info(f"Usage can be over target because of high stale rate: {calc_usage(self.prunedir)}") def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain height = self.nodes[1].getblockcount() self.log.info(f"Current block height: {height}") self.forkheight = height - 287 self.forkhash = self.nodes[1].getblockhash(self.forkheight) self.log.info(f"Invalidating block {self.forkhash} at height {self.forkheight}") self.nodes[1].invalidateblock(self.forkhash) # We've now switched to our previously mined-24 block fork on node 1, but that's not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(self.forkheight - 1) curhash = self.nodes[1].getblockhash(self.forkheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(self.forkheight - 1) assert self.nodes[1].getblockcount() == self.forkheight - 1 self.log.info(f"New best height: {self.nodes[1].getblockcount()}") # Disconnect node1 and generate the new chain self.disconnect_nodes(0, 1) self.disconnect_nodes(1, 2) self.log.info("Generating new longer chain of 300 more blocks") self.generate(self.nodes[1], 300, sync_fun=self.no_op) self.log.info("Reconnect nodes") self.connect_nodes(0, 1) self.connect_nodes(1, 2) self.sync_blocks(self.nodes[0:3], timeout=120) self.log.info(f"Verify height on node 2: {self.nodes[2].getblockcount()}") self.log.info(f"Usage possibly still high because of stale blocks in block files: {calc_usage(self.prunedir)}") self.log.info("Mine 220 more large blocks so we have requisite history") mine_large_blocks(self.nodes[0], 220) self.sync_blocks(self.nodes[0:3], timeout=120) usage = calc_usage(self.prunedir) self.log.info(f"Usage should be below target: {usage}") assert_greater_than(550, usage) def reorg_back(self): # Verify that a block on the old main chain fork has been pruned away assert_raises_rpc_error(-1, "Block not available (pruned data)", self.nodes[2].getblock, self.forkhash) with self.nodes[2].assert_debug_log(expected_msgs=['block verification stopping at height', '(no data)']): assert not self.nodes[2].verifychain(checklevel=4, nblocks=0) self.log.info(f"Will need to redownload block {self.forkheight}") # Verify that we have enough history to reorg back to the fork point # Although this is more than 288 blocks, because this chain was written more recently # and only its other 299 small and 220 large blocks are in the block files after it, # it is expected to still be retained self.nodes[2].getblock(self.nodes[2].getblockhash(self.forkheight)) first_reorg_height = self.nodes[2].getblockcount() curchainhash = self.nodes[2].getblockhash(self.mainchainheight) self.nodes[2].invalidateblock(curchainhash) goalbestheight = self.mainchainheight goalbesthash = self.mainchainhash2 # As of 0.10 the current block download logic is not able to reorg to the original chain created in # create_chain_with_stale_blocks because it doesn't know of any peer that's on that chain from which to # redownload its missing blocks. # Invalidate the reorg_test chain in node 0 as well, it can successfully switch to the original chain # because it has all the block data. # However it must mine enough blocks to have a more work chain than the reorg_test chain in order # to trigger node 2's block download logic. # At this point node 2 is within 288 blocks of the fork point so it will preserve its ability to reorg if self.nodes[2].getblockcount() < self.mainchainheight: blocks_to_mine = first_reorg_height + 1 - self.mainchainheight self.log.info(f"Rewind node 0 to prev main chain to mine longer chain to trigger redownload. Blocks needed: {blocks_to_mine}") self.nodes[0].invalidateblock(curchainhash) assert_equal(self.nodes[0].getblockcount(), self.mainchainheight) assert_equal(self.nodes[0].getbestblockhash(), self.mainchainhash2) goalbesthash = self.generate(self.nodes[0], blocks_to_mine, sync_fun=self.no_op)[-1] goalbestheight = first_reorg_height + 1 self.log.info("Verify node 2 reorged back to the main chain, some blocks of which it had to redownload") # Wait for Node 2 to reorg to proper height self.wait_until(lambda: self.nodes[2].getblockcount() >= goalbestheight, timeout=900) assert_equal(self.nodes[2].getbestblockhash(), goalbesthash) # Verify we can now have the data for a block previously pruned assert_equal(self.nodes[2].getblock(self.forkhash)["height"], self.forkheight) def manual_test(self, node_number, use_timestamp): # at this point, node has 995 blocks and has not yet run in prune mode self.start_node(node_number) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) assert_raises_rpc_error(-1, "Cannot prune blocks because node is not in prune mode", node.pruneblockchain, 500) # now re-start in manual pruning mode self.restart_node(node_number, extra_args=["-prune=1"]) node = self.nodes[node_number] assert_equal(node.getblockcount(), 995) def height(index): if use_timestamp: return node.getblockheader(node.getblockhash(index))["time"] + TIMESTAMP_WINDOW else: return index def prune(index): ret = node.pruneblockchain(height=height(index)) assert_equal(ret + 1, node.getblockchaininfo()['pruneheight']) def has_block(index): return os.path.isfile(os.path.join(self.nodes[node_number].blocks_path, f"blk{index:05}.dat")) # should not prune because chain tip of node 3 (995) < PruneAfterHeight (1000) assert_raises_rpc_error(-1, "Blockchain is too short for pruning", node.pruneblockchain, height(500)) # Save block transaction count before pruning, assert value block1_details = node.getblock(node.getblockhash(1)) assert_equal(block1_details["nTx"], len(block1_details["tx"])) # mine 6 blocks so we are at height 1001 (i.e., above PruneAfterHeight) self.generate(node, 6, sync_fun=self.no_op) assert_equal(node.getblockchaininfo()["blocks"], 1001) # prune parameter in the future (block or timestamp) should raise an exception future_parameter = height(1001) + 5 if use_timestamp: assert_raises_rpc_error(-8, "Could not find block with at least the specified timestamp", node.pruneblockchain, future_parameter) else: assert_raises_rpc_error(-8, "Blockchain is shorter than the attempted prune height", node.pruneblockchain, future_parameter) # Pruned block should still know the number of transactions assert_equal(node.getblockheader(node.getblockhash(1))["nTx"], block1_details["nTx"]) # negative heights should raise an exception assert_raises_rpc_error(-8, "Negative block height", node.pruneblockchain, -10) # height=100 too low to prune first block file so this is a no-op prune(100) assert has_block(0), "blk00000.dat is missing when should still be there" # Does nothing node.pruneblockchain(height(0)) assert has_block(0), "blk00000.dat is missing when should still be there" # height=500 should prune first file prune(500) assert not has_block(0), "blk00000.dat is still there, should be pruned by now" assert has_block(1), "blk00001.dat is missing when should still be there" # height=650 should prune second file prune(650) assert not has_block(1), "blk00001.dat is still there, should be pruned by now" # height=1000 should not prune anything more, because tip-288 is in blk00002.dat. prune(1000) assert has_block(2), "blk00002.dat is still there, should be pruned by now" # advance the tip so blk00002.dat and blk00003.dat can be pruned (the last 288 blocks should now be in blk00004.dat) self.generate(node, MIN_BLOCKS_TO_KEEP, sync_fun=self.no_op) prune(1000) assert not has_block(2), "blk00002.dat is still there, should be pruned by now" assert not has_block(3), "blk00003.dat is still there, should be pruned by now" # stop node, start back up with auto-prune at 550 MiB, make sure still runs self.restart_node(node_number, extra_args=["-prune=550"]) self.log.info("Success") def wallet_test(self): # check that the pruning node's wallet is still in good shape self.log.info("Stop and start pruning node to trigger wallet rescan") self.restart_node(2, extra_args=["-prune=550"]) self.log.info("Success") # check that wallet loads successfully when restarting a pruned node after IBD. # this was reported to fail in #7494. self.log.info("Syncing node 5 to test wallet") self.connect_nodes(0, 5) nds = [self.nodes[0], self.nodes[5]] self.sync_blocks(nds, wait=5, timeout=300) self.restart_node(5, extra_args=["-prune=550", "-blockfilterindex=1"]) # restart to trigger rescan self.log.info("Success") def run_test(self): self.log.info("Warning! This test requires 4GB of disk space") self.log.info("Mining a big blockchain of 995 blocks") self.create_big_chain() # Chain diagram key: # * blocks on main chain # +,&,$,@ blocks on other forks # X invalidated block # N1 Node 1 # # Start by mining a simple chain that all nodes have # N0=N1=N2 **...*(995) # stop manual-pruning node with 995 blocks self.stop_node(3) self.stop_node(4) self.log.info("Check that we haven't started pruning yet because we're below PruneAfterHeight") self.test_height_min() # Extend this chain past the PruneAfterHeight # N0=N1=N2 **...*(1020) self.log.info("Check that we'll exceed disk space target if we have a very high stale block rate") self.create_chain_with_staleblocks() # Disconnect N0 # And mine a 24 block chain on N1 and a separate 25 block chain on N0 # N1=N2 **...*+...+(1044) # N0 **...**...**(1045) # # reconnect nodes causing reorg on N1 and N2 # N1=N2 **...*(1020) *...**(1045) # \ # +...+(1044) # # repeat this process until you have 12 stale forks hanging off the # main chain on N1 and N2 # N0 *************************...***************************(1320) # # N1=N2 **...*(1020) *...**(1045) *.. ..**(1295) *...**(1320) # \ \ \ # +...+(1044) &.. $...$(1319) # Save some current chain state for later use self.mainchainheight = self.nodes[2].getblockcount() # 1320 self.mainchainhash2 = self.nodes[2].getblockhash(self.mainchainheight) self.log.info("Check that we can survive a 288 block reorg still") self.reorg_test() # (1033, ) # Now create a 288 block reorg by mining a longer chain on N1 # First disconnect N1 # Then invalidate 1033 on main chain and 1032 on fork so height is 1032 on main chain # N1 **...*(1020) **...**(1032)X.. # \ # ++...+(1031)X.. # # Now mine 300 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@(1332) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # Reconnect nodes and mine 220 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # N2 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ *...**(1320) # \ \ # ++...++(1044) .. # # N0 ********************(1032) @@...@@@(1552) # \ # *...**(1320) self.log.info("Test that we can rerequest a block we previously pruned if needed for a reorg") self.reorg_back() # Verify that N2 still has block 1033 on current chain (@), but not on main chain (*) # Invalidate 1033 on current chain (@) on N2 and we should be able to reorg to # original main chain (*), but will require redownload of some blocks # In order to have a peer we think we can download from, must also perform this invalidation # on N0 and mine a new longest chain to trigger. # Final result: # N0 ********************(1032) **...****(1553) # \ # X@...@@@(1552) # # N2 **...*(1020) **...**(1032) **...****(1553) # \ \ # \ X@...@@@(1552) # \ # +.. # # N1 doesn't change because 1033 on main chain (*) is invalid self.log.info("Test manual pruning with block indices") self.manual_test(3, use_timestamp=False) self.log.info("Test manual pruning with timestamps") self.manual_test(4, use_timestamp=True) if self.is_wallet_compiled(): self.log.info("Test wallet re-scan") self.wallet_test() self.log.info("Test it's not possible to rescan beyond pruned data") self.test_rescan_blockchain() self.log.info("Test invalid pruning command line options") self.test_invalid_command_line_options() self.log.info("Test scanblocks can not return pruned data") self.test_scanblocks_pruned() self.log.info("Test pruneheight reflects the presence of block and undo data") self.test_pruneheight_undo_presence() self.log.info("Done") def test_scanblocks_pruned(self): node = self.nodes[5] genesis_blockhash = node.getblockhash(0) false_positive_spk = bytes.fromhex("001400000000000000000000000000000000000cadcb") assert genesis_blockhash in node.scanblocks( "start", [{"desc": f"raw({false_positive_spk.hex()})"}], 0, 0)['relevant_blocks'] assert_raises_rpc_error(-1, "Block not available (pruned data)", node.scanblocks, "start", [{"desc": f"raw({false_positive_spk.hex()})"}], 0, 0, "basic", {"filter_false_positives": True}) def test_pruneheight_undo_presence(self): node = self.nodes[2] pruneheight = node.getblockchaininfo()["pruneheight"] fetch_block = node.getblockhash(pruneheight - 1) self.connect_nodes(1, 2) peers = node.getpeerinfo() node.getblockfrompeer(fetch_block, peers[0]["id"]) self.wait_until(lambda: not try_rpc(-1, "Block not available (pruned data)", node.getblock, fetch_block), timeout=5) new_pruneheight = node.getblockchaininfo()["pruneheight"] assert_equal(pruneheight, new_pruneheight) if __name__ == '__main__': PruneTest().main()