#!/usr/bin/env python3 # Copyright (c) 2014-2022 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test fee estimation code.""" from copy import deepcopy from decimal import Decimal import os import random import time from test_framework.messages import ( COIN, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_greater_than_or_equal, assert_raises_rpc_error, satoshi_round, ) from test_framework.wallet import MiniWallet MAX_FILE_AGE = 60 SECONDS_PER_HOUR = 60 * 60 def small_txpuzzle_randfee( wallet, from_node, conflist, unconflist, amount, min_fee, fee_increment, batch_reqs ): """Create and send a transaction with a random fee using MiniWallet. The function takes a list of confirmed outputs and unconfirmed outputs and attempts to use the confirmed list first for its inputs. It adds the newly created outputs to the unconfirmed list. Returns (raw transaction, fee).""" # It's best to exponentially distribute our random fees # because the buckets are exponentially spaced. # Exponentially distributed from 1-128 * fee_increment rand_fee = float(fee_increment) * (1.1892 ** random.randint(0, 28)) # Total fee ranges from min_fee to min_fee + 127*fee_increment fee = min_fee - fee_increment + satoshi_round(rand_fee) utxos_to_spend = [] total_in = Decimal("0.00000000") while total_in <= (amount + fee) and len(conflist) > 0: t = conflist.pop(0) total_in += t["value"] utxos_to_spend.append(t) while total_in <= (amount + fee) and len(unconflist) > 0: t = unconflist.pop(0) total_in += t["value"] utxos_to_spend.append(t) if total_in <= amount + fee: raise RuntimeError(f"Insufficient funds: need {amount + fee}, have {total_in}") tx = wallet.create_self_transfer_multi( utxos_to_spend=utxos_to_spend, fee_per_output=0, )["tx"] tx.vout[0].nValue = int((total_in - amount - fee) * COIN) tx.vout.append(deepcopy(tx.vout[0])) tx.vout[1].nValue = int(amount * COIN) tx.rehash() txid = tx.hash tx_hex = tx.serialize().hex() batch_reqs.append(from_node.sendrawtransaction.get_request(hexstring=tx_hex, maxfeerate=0)) unconflist.append({"txid": txid, "vout": 0, "value": total_in - amount - fee}) unconflist.append({"txid": txid, "vout": 1, "value": amount}) return (tx.get_vsize(), fee) def check_raw_estimates(node, fees_seen): """Call estimaterawfee and verify that the estimates meet certain invariants.""" delta = 1.0e-6 # account for rounding error for i in range(1, 26): for _, e in node.estimaterawfee(i).items(): feerate = float(e["feerate"]) assert_greater_than(feerate, 0) if feerate + delta < min(fees_seen) or feerate - delta > max(fees_seen): raise AssertionError( f"Estimated fee ({feerate}) out of range ({min(fees_seen)},{max(fees_seen)})" ) def check_smart_estimates(node, fees_seen): """Call estimatesmartfee and verify that the estimates meet certain invariants.""" delta = 1.0e-6 # account for rounding error last_feerate = float(max(fees_seen)) all_smart_estimates = [node.estimatesmartfee(i) for i in range(1, 26)] mempoolMinFee = node.getmempoolinfo()["mempoolminfee"] minRelaytxFee = node.getmempoolinfo()["minrelaytxfee"] for i, e in enumerate(all_smart_estimates): # estimate is for i+1 feerate = float(e["feerate"]) assert_greater_than(feerate, 0) assert_greater_than_or_equal(feerate, float(mempoolMinFee)) assert_greater_than_or_equal(feerate, float(minRelaytxFee)) if feerate + delta < min(fees_seen) or feerate - delta > max(fees_seen): raise AssertionError( f"Estimated fee ({feerate}) out of range ({min(fees_seen)},{max(fees_seen)})" ) if feerate - delta > last_feerate: raise AssertionError( f"Estimated fee ({feerate}) larger than last fee ({last_feerate}) for lower number of confirms" ) last_feerate = feerate if i == 0: assert_equal(e["blocks"], 2) else: assert_greater_than_or_equal(i + 1, e["blocks"]) def check_estimates(node, fees_seen): check_raw_estimates(node, fees_seen) check_smart_estimates(node, fees_seen) def make_tx(wallet, utxo, feerate): """Create a 1in-1out transaction with a specific input and feerate (sat/vb).""" return wallet.create_self_transfer( utxo_to_spend=utxo, fee_rate=Decimal(feerate * 1000) / COIN, ) def check_fee_estimates_btw_modes(node, expected_conservative, expected_economical): fee_est_conservative = node.estimatesmartfee(1, estimate_mode="conservative")['feerate'] fee_est_economical = node.estimatesmartfee(1, estimate_mode="economical")['feerate'] fee_est_default = node.estimatesmartfee(1)['feerate'] assert_equal(fee_est_conservative, expected_conservative) assert_equal(fee_est_economical, expected_economical) assert_equal(fee_est_default, expected_economical) class EstimateFeeTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 # whitelist peers to speed up tx relay / mempool sync self.noban_tx_relay = True self.extra_args = [ [], ["-blockmaxweight=68000"], ["-blockmaxweight=32000"], ] def setup_network(self): """ We'll setup the network to have 3 nodes that all mine with different parameters. But first we need to use one node to create a lot of outputs which we will use to generate our transactions. """ self.add_nodes(3, extra_args=self.extra_args) # Use node0 to mine blocks for input splitting # Node1 mines small blocks but that are bigger than the expected transaction rate. # NOTE: the CreateNewBlock code starts counting block weight at 4,000 weight, # (68k weight is room enough for 120 or so transactions) # Node2 is a stingy miner, that # produces too small blocks (room for only 55 or so transactions) def transact_and_mine(self, numblocks, mining_node): min_fee = Decimal("0.00001") # We will now mine numblocks blocks generating on average 100 transactions between each block # We shuffle our confirmed txout set before each set of transactions # small_txpuzzle_randfee will use the transactions that have inputs already in the chain when possible # resorting to tx's that depend on the mempool when those run out for _ in range(numblocks): random.shuffle(self.confutxo) batch_sendtx_reqs = [] for _ in range(random.randrange(100 - 50, 100 + 50)): from_index = random.randint(1, 2) (tx_bytes, fee) = small_txpuzzle_randfee( self.wallet, self.nodes[from_index], self.confutxo, self.memutxo, Decimal("0.005"), min_fee, min_fee, batch_sendtx_reqs, ) tx_kbytes = tx_bytes / 1000.0 self.fees_per_kb.append(float(fee) / tx_kbytes) for node in self.nodes: node.batch(batch_sendtx_reqs) self.sync_mempools(wait=0.1) mined = mining_node.getblock(self.generate(mining_node, 1)[0], True)["tx"] # update which txouts are confirmed newmem = [] for utx in self.memutxo: if utx["txid"] in mined: self.confutxo.append(utx) else: newmem.append(utx) self.memutxo = newmem def initial_split(self, node): """Split two coinbase UTxOs into many small coins""" self.confutxo = self.wallet.send_self_transfer_multi( from_node=node, utxos_to_spend=[self.wallet.get_utxo() for _ in range(2)], num_outputs=2048)['new_utxos'] while len(node.getrawmempool()) > 0: self.generate(node, 1, sync_fun=self.no_op) def sanity_check_estimates_range(self): """Populate estimation buckets, assert estimates are in a sane range and are strictly increasing as the target decreases.""" self.fees_per_kb = [] self.memutxo = [] self.log.info("Will output estimates for 1/2/3/6/15/25 blocks") for _ in range(2): self.log.info( "Creating transactions and mining them with a block size that can't keep up" ) # Create transactions and mine 10 small blocks with node 2, but create txs faster than we can mine self.transact_and_mine(10, self.nodes[2]) check_estimates(self.nodes[1], self.fees_per_kb) self.log.info( "Creating transactions and mining them at a block size that is just big enough" ) # Generate transactions while mining 10 more blocks, this time with node1 # which mines blocks with capacity just above the rate that transactions are being created self.transact_and_mine(10, self.nodes[1]) check_estimates(self.nodes[1], self.fees_per_kb) # Finish by mining a normal-sized block: while len(self.nodes[1].getrawmempool()) > 0: self.generate(self.nodes[1], 1) self.log.info("Final estimates after emptying mempools") check_estimates(self.nodes[1], self.fees_per_kb) def test_feerate_mempoolminfee(self): high_val = 3 * self.nodes[1].estimatesmartfee(1)["feerate"] self.restart_node(1, extra_args=[f"-minrelaytxfee={high_val}"]) check_estimates(self.nodes[1], self.fees_per_kb) self.restart_node(1) def sanity_check_rbf_estimates(self, utxos): """During 5 blocks, broadcast low fee transactions. Only 10% of them get confirmed and the remaining ones get RBF'd with a high fee transaction at the next block. The block policy estimator should return the high feerate. """ # The broadcaster and block producer node = self.nodes[0] miner = self.nodes[1] # In sat/vb low_feerate = 1 high_feerate = 10 # Cache the utxos of which to replace the spender after it failed to get # confirmed utxos_to_respend = [] txids_to_replace = [] assert_greater_than_or_equal(len(utxos), 250) for _ in range(5): # Broadcast 45 low fee transactions that will need to be RBF'd txs = [] for _ in range(45): u = utxos.pop(0) tx = make_tx(self.wallet, u, low_feerate) utxos_to_respend.append(u) txids_to_replace.append(tx["txid"]) txs.append(tx) # Broadcast 5 low fee transaction which don't need to for _ in range(5): tx = make_tx(self.wallet, utxos.pop(0), low_feerate) txs.append(tx) batch_send_tx = [node.sendrawtransaction.get_request(tx["hex"]) for tx in txs] for n in self.nodes: n.batch(batch_send_tx) # Mine the transactions on another node self.sync_mempools(wait=0.1, nodes=[node, miner]) for txid in txids_to_replace: miner.prioritisetransaction(txid=txid, fee_delta=-COIN) self.generate(miner, 1) # RBF the low-fee transactions while len(utxos_to_respend) > 0: u = utxos_to_respend.pop(0) tx = make_tx(self.wallet, u, high_feerate) node.sendrawtransaction(tx["hex"]) txs.append(tx) dec_txs = [res["result"] for res in node.batch([node.decoderawtransaction.get_request(tx["hex"]) for tx in txs])] self.wallet.scan_txs(dec_txs) # Mine the last replacement txs self.sync_mempools(wait=0.1, nodes=[node, miner]) self.generate(miner, 1) # Only 10% of the transactions were really confirmed with a low feerate, # the rest needed to be RBF'd. We must return the 90% conf rate feerate. high_feerate_kvb = Decimal(high_feerate) / COIN * 10 ** 3 est_feerate = node.estimatesmartfee(2)["feerate"] assert_equal(est_feerate, high_feerate_kvb) def test_old_fee_estimate_file(self): # Get the initial fee rate while node is running fee_rate = self.nodes[0].estimatesmartfee(1)["feerate"] # Restart node to ensure fee_estimate.dat file is read self.restart_node(0) assert_equal(self.nodes[0].estimatesmartfee(1)["feerate"], fee_rate) fee_dat = self.nodes[0].chain_path / "fee_estimates.dat" # Stop the node and backdate the fee_estimates.dat file more than MAX_FILE_AGE self.stop_node(0) last_modified_time = time.time() - (MAX_FILE_AGE + 1) * SECONDS_PER_HOUR os.utime(fee_dat, (last_modified_time, last_modified_time)) # Start node and ensure the fee_estimates.dat file was not read self.start_node(0) assert_equal(self.nodes[0].estimatesmartfee(1)["errors"], ["Insufficient data or no feerate found"]) def test_estimate_dat_is_flushed_periodically(self): fee_dat = self.nodes[0].chain_path / "fee_estimates.dat" os.remove(fee_dat) if os.path.exists(fee_dat) else None # Verify that fee_estimates.dat does not exist assert_equal(os.path.isfile(fee_dat), False) # Verify if the string "Flushed fee estimates to fee_estimates.dat." is present in the debug log file. # If present, it indicates that fee estimates have been successfully flushed to disk. with self.nodes[0].assert_debug_log(expected_msgs=["Flushed fee estimates to fee_estimates.dat."], timeout=1): # Mock the scheduler for an hour to flush fee estimates to fee_estimates.dat self.nodes[0].mockscheduler(SECONDS_PER_HOUR) # Verify that fee estimates were flushed and fee_estimates.dat file is created assert_equal(os.path.isfile(fee_dat), True) # Verify that the estimates remain the same if there are no blocks in the flush interval block_hash_before = self.nodes[0].getbestblockhash() fee_dat_initial_content = open(fee_dat, "rb").read() with self.nodes[0].assert_debug_log(expected_msgs=["Flushed fee estimates to fee_estimates.dat."], timeout=1): # Mock the scheduler for an hour to flush fee estimates to fee_estimates.dat self.nodes[0].mockscheduler(SECONDS_PER_HOUR) # Verify that there were no blocks in between the flush interval assert_equal(block_hash_before, self.nodes[0].getbestblockhash()) fee_dat_current_content = open(fee_dat, "rb").read() assert_equal(fee_dat_current_content, fee_dat_initial_content) # Verify that the estimates remain the same after shutdown with no blocks before shutdown self.restart_node(0) fee_dat_current_content = open(fee_dat, "rb").read() assert_equal(fee_dat_current_content, fee_dat_initial_content) # Verify that the estimates are not the same if new blocks were produced in the flush interval with self.nodes[0].assert_debug_log(expected_msgs=["Flushed fee estimates to fee_estimates.dat."], timeout=1): # Mock the scheduler for an hour to flush fee estimates to fee_estimates.dat self.generate(self.nodes[0], 5, sync_fun=self.no_op) self.nodes[0].mockscheduler(SECONDS_PER_HOUR) fee_dat_current_content = open(fee_dat, "rb").read() assert fee_dat_current_content != fee_dat_initial_content fee_dat_initial_content = fee_dat_current_content # Generate blocks before shutdown and verify that the fee estimates are not the same self.generate(self.nodes[0], 5, sync_fun=self.no_op) self.restart_node(0) fee_dat_current_content = open(fee_dat, "rb").read() assert fee_dat_current_content != fee_dat_initial_content def test_acceptstalefeeestimates_option(self): # Get the initial fee rate while node is running fee_rate = self.nodes[0].estimatesmartfee(1)["feerate"] self.stop_node(0) fee_dat = self.nodes[0].chain_path / "fee_estimates.dat" # Stop the node and backdate the fee_estimates.dat file more than MAX_FILE_AGE last_modified_time = time.time() - (MAX_FILE_AGE + 1) * SECONDS_PER_HOUR os.utime(fee_dat, (last_modified_time, last_modified_time)) # Restart node with -acceptstalefeeestimates option to ensure fee_estimate.dat file is read self.start_node(0,extra_args=["-acceptstalefeeestimates"]) assert_equal(self.nodes[0].estimatesmartfee(1)["feerate"], fee_rate) def clear_estimates(self): self.log.info("Restarting node with fresh estimation") self.stop_node(0) fee_dat = self.nodes[0].chain_path / "fee_estimates.dat" os.remove(fee_dat) self.start_node(0) self.connect_nodes(0, 1) self.connect_nodes(0, 2) assert_equal(self.nodes[0].estimatesmartfee(1)["errors"], ["Insufficient data or no feerate found"]) def broadcast_and_mine(self, broadcaster, miner, feerate, count): """Broadcast and mine some number of transactions with a specified fee rate.""" for _ in range(count): self.wallet.send_self_transfer(from_node=broadcaster, fee_rate=feerate) self.sync_mempools() self.generate(miner, 1) def test_estimation_modes(self): low_feerate = Decimal("0.001") high_feerate = Decimal("0.005") tx_count = 24 # Broadcast and mine high fee transactions for the first 12 blocks. for _ in range(12): self.broadcast_and_mine(self.nodes[1], self.nodes[2], high_feerate, tx_count) check_fee_estimates_btw_modes(self.nodes[0], high_feerate, high_feerate) # We now track 12 blocks; short horizon stats will start decaying. # Broadcast and mine low fee transactions for the next 4 blocks. for _ in range(4): self.broadcast_and_mine(self.nodes[1], self.nodes[2], low_feerate, tx_count) # conservative mode will consider longer time horizons while economical mode does not # Check the fee estimates for both modes after mining low fee transactions. check_fee_estimates_btw_modes(self.nodes[0], high_feerate, low_feerate) def run_test(self): self.log.info("This test is time consuming, please be patient") self.log.info("Splitting inputs so we can generate tx's") # Split two coinbases into many small utxos self.start_node(0) self.wallet = MiniWallet(self.nodes[0]) self.initial_split(self.nodes[0]) self.log.info("Finished splitting") # Now we can connect the other nodes, didn't want to connect them earlier # so the estimates would not be affected by the splitting transactions self.start_node(1) self.start_node(2) self.connect_nodes(1, 0) self.connect_nodes(0, 2) self.connect_nodes(2, 1) self.sync_all() self.log.info("Testing estimates with single transactions.") self.sanity_check_estimates_range() self.log.info("Test fee_estimates.dat is flushed periodically") self.test_estimate_dat_is_flushed_periodically() # check that the effective feerate is greater than or equal to the mempoolminfee even for high mempoolminfee self.log.info( "Test fee rate estimation after restarting node with high MempoolMinFee" ) self.test_feerate_mempoolminfee() self.log.info("Test acceptstalefeeestimates option") self.test_acceptstalefeeestimates_option() self.log.info("Test reading old fee_estimates.dat") self.test_old_fee_estimate_file() self.clear_estimates() self.log.info("Testing estimates with RBF.") self.sanity_check_rbf_estimates(self.confutxo + self.memutxo) self.clear_estimates() self.log.info("Test estimatesmartfee modes") self.test_estimation_modes() self.log.info("Testing that fee estimation is disabled in blocksonly.") self.restart_node(0, ["-blocksonly"]) assert_raises_rpc_error( -32603, "Fee estimation disabled", self.nodes[0].estimatesmartfee, 2 ) if __name__ == "__main__": EstimateFeeTest(__file__).main()