// Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include static const char* const DATABASE_FILENAME = "wallet.dat"; static constexpr int32_t WALLET_SCHEMA_VERSION = 0; static Mutex g_sqlite_mutex; static int g_sqlite_count GUARDED_BY(g_sqlite_mutex) = 0; static void ErrorLogCallback(void* arg, int code, const char* msg) { // From sqlite3_config() documentation for the SQLITE_CONFIG_LOG option: // "The void pointer that is the second argument to SQLITE_CONFIG_LOG is passed through as // the first parameter to the application-defined logger function whenever that function is // invoked." // Assert that this is the case: assert(arg == nullptr); LogPrintf("SQLite Error. Code: %d. Message: %s\n", code, msg); } SQLiteDatabase::SQLiteDatabase(const fs::path& dir_path, const fs::path& file_path, bool mock) : WalletDatabase(), m_mock(mock), m_dir_path(dir_path.string()), m_file_path(file_path.string()) { { LOCK(g_sqlite_mutex); LogPrintf("Using SQLite Version %s\n", SQLiteDatabaseVersion()); LogPrintf("Using wallet %s\n", m_dir_path); if (++g_sqlite_count == 1) { // Setup logging int ret = sqlite3_config(SQLITE_CONFIG_LOG, ErrorLogCallback, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup error log: %s\n", sqlite3_errstr(ret))); } // Force serialized threading mode ret = sqlite3_config(SQLITE_CONFIG_SERIALIZED); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to configure serialized threading mode: %s\n", sqlite3_errstr(ret))); } } int ret = sqlite3_initialize(); // This is a no-op if sqlite3 is already initialized if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to initialize SQLite: %s\n", sqlite3_errstr(ret))); } } try { Open(); } catch (const std::runtime_error&) { // If open fails, cleanup this object and rethrow the exception Cleanup(); throw; } } void SQLiteBatch::SetupSQLStatements() { int res; if (!m_read_stmt) { if ((res = sqlite3_prepare_v2(m_database.m_db, "SELECT value FROM main WHERE key = ?", -1, &m_read_stmt, nullptr)) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res))); } } if (!m_insert_stmt) { if ((res = sqlite3_prepare_v2(m_database.m_db, "INSERT INTO main VALUES(?, ?)", -1, &m_insert_stmt, nullptr)) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res))); } } if (!m_overwrite_stmt) { if ((res = sqlite3_prepare_v2(m_database.m_db, "INSERT or REPLACE into main values(?, ?)", -1, &m_overwrite_stmt, nullptr)) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res))); } } if (!m_delete_stmt) { if ((res = sqlite3_prepare_v2(m_database.m_db, "DELETE FROM main WHERE key = ?", -1, &m_delete_stmt, nullptr)) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res))); } } if (!m_cursor_stmt) { if ((res = sqlite3_prepare_v2(m_database.m_db, "SELECT key, value FROM main", -1, &m_cursor_stmt, nullptr)) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements : %s\n", sqlite3_errstr(res))); } } } SQLiteDatabase::~SQLiteDatabase() { Cleanup(); } void SQLiteDatabase::Cleanup() noexcept { Close(); LOCK(g_sqlite_mutex); if (--g_sqlite_count == 0) { int ret = sqlite3_shutdown(); if (ret != SQLITE_OK) { LogPrintf("SQLiteDatabase: Failed to shutdown SQLite: %s\n", sqlite3_errstr(ret)); } } } bool SQLiteDatabase::Verify(bilingual_str& error) { assert(m_db); // Check the application ID matches our network magic sqlite3_stmt* app_id_stmt{nullptr}; int ret = sqlite3_prepare_v2(m_db, "PRAGMA application_id", -1, &app_id_stmt, nullptr); if (ret != SQLITE_OK) { sqlite3_finalize(app_id_stmt); error = strprintf(_("SQLiteDatabase: Failed to prepare the statement to fetch the application id: %s"), sqlite3_errstr(ret)); return false; } ret = sqlite3_step(app_id_stmt); if (ret != SQLITE_ROW) { sqlite3_finalize(app_id_stmt); error = strprintf(_("SQLiteDatabase: Failed to fetch the application id: %s"), sqlite3_errstr(ret)); return false; } uint32_t app_id = static_cast(sqlite3_column_int(app_id_stmt, 0)); sqlite3_finalize(app_id_stmt); uint32_t net_magic = ReadBE32(Params().MessageStart()); if (app_id != net_magic) { error = strprintf(_("SQLiteDatabase: Unexpected application id. Expected %u, got %u"), net_magic, app_id); return false; } // Check our schema version sqlite3_stmt* user_ver_stmt{nullptr}; ret = sqlite3_prepare_v2(m_db, "PRAGMA user_version", -1, &user_ver_stmt, nullptr); if (ret != SQLITE_OK) { sqlite3_finalize(user_ver_stmt); error = strprintf(_("SQLiteDatabase: Failed to prepare the statement to fetch sqlite wallet schema version: %s"), sqlite3_errstr(ret)); return false; } ret = sqlite3_step(user_ver_stmt); if (ret != SQLITE_ROW) { sqlite3_finalize(user_ver_stmt); error = strprintf(_("SQLiteDatabase: Failed to fetch sqlite wallet schema version: %s"), sqlite3_errstr(ret)); return false; } int32_t user_ver = sqlite3_column_int(user_ver_stmt, 0); sqlite3_finalize(user_ver_stmt); if (user_ver != WALLET_SCHEMA_VERSION) { error = strprintf(_("SQLiteDatabase: Unknown sqlite wallet schema version %d. Only version %d is supported"), user_ver, WALLET_SCHEMA_VERSION); return false; } sqlite3_stmt* stmt{nullptr}; ret = sqlite3_prepare_v2(m_db, "PRAGMA integrity_check", -1, &stmt, nullptr); if (ret != SQLITE_OK) { sqlite3_finalize(stmt); error = strprintf(_("SQLiteDatabase: Failed to prepare statement to verify database: %s"), sqlite3_errstr(ret)); return false; } while (true) { ret = sqlite3_step(stmt); if (ret == SQLITE_DONE) { break; } if (ret != SQLITE_ROW) { error = strprintf(_("SQLiteDatabase: Failed to execute statement to verify database: %s"), sqlite3_errstr(ret)); break; } const char* msg = (const char*)sqlite3_column_text(stmt, 0); if (!msg) { error = strprintf(_("SQLiteDatabase: Failed to read database verification error: %s"), sqlite3_errstr(ret)); break; } std::string str_msg(msg); if (str_msg == "ok") { continue; } if (error.empty()) { error = _("Failed to verify database") + Untranslated("\n"); } error += Untranslated(strprintf("%s\n", str_msg)); } sqlite3_finalize(stmt); return error.empty(); } void SQLiteDatabase::Open() { int flags = SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE; if (m_mock) { flags |= SQLITE_OPEN_MEMORY; // In memory database for mock db } if (m_db == nullptr) { TryCreateDirectories(m_dir_path); int ret = sqlite3_open_v2(m_file_path.c_str(), &m_db, flags, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to open database: %s\n", sqlite3_errstr(ret))); } } if (sqlite3_db_readonly(m_db, "main") != 0) { throw std::runtime_error("SQLiteDatabase: Database opened in readonly mode but read-write permissions are needed"); } // Acquire an exclusive lock on the database // First change the locking mode to exclusive int ret = sqlite3_exec(m_db, "PRAGMA locking_mode = exclusive", nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Unable to change database locking mode to exclusive: %s\n", sqlite3_errstr(ret))); } // Now begin a transaction to acquire the exclusive lock. This lock won't be released until we close because of the exclusive locking mode. ret = sqlite3_exec(m_db, "BEGIN EXCLUSIVE TRANSACTION", nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error("SQLiteDatabase: Unable to obtain an exclusive lock on the database, is it being used by another bitcoind?\n"); } ret = sqlite3_exec(m_db, "COMMIT", nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Unable to end exclusive lock transaction: %s\n", sqlite3_errstr(ret))); } // Enable fullfsync for the platforms that use it ret = sqlite3_exec(m_db, "PRAGMA fullfsync = true", nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to enable fullfsync: %s\n", sqlite3_errstr(ret))); } // Make the table for our key-value pairs // First check that the main table exists sqlite3_stmt* check_main_stmt{nullptr}; ret = sqlite3_prepare_v2(m_db, "SELECT name FROM sqlite_master WHERE type='table' AND name='main'", -1, &check_main_stmt, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to prepare statement to check table existence: %s\n", sqlite3_errstr(ret))); } ret = sqlite3_step(check_main_stmt); if (sqlite3_finalize(check_main_stmt) != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to finalize statement checking table existence: %s\n", sqlite3_errstr(ret))); } bool table_exists; if (ret == SQLITE_DONE) { table_exists = false; } else if (ret == SQLITE_ROW) { table_exists = true; } else { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to execute statement to check table existence: %s\n", sqlite3_errstr(ret))); } // Do the db setup things because the table doesn't exist only when we are creating a new wallet if (!table_exists) { ret = sqlite3_exec(m_db, "CREATE TABLE main(key BLOB PRIMARY KEY NOT NULL, value BLOB NOT NULL)", nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to create new database: %s\n", sqlite3_errstr(ret))); } // Set the application id uint32_t app_id = ReadBE32(Params().MessageStart()); std::string set_app_id = strprintf("PRAGMA application_id = %d", static_cast(app_id)); ret = sqlite3_exec(m_db, set_app_id.c_str(), nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to set the application id: %s\n", sqlite3_errstr(ret))); } // Set the user version std::string set_user_ver = strprintf("PRAGMA user_version = %d", WALLET_SCHEMA_VERSION); ret = sqlite3_exec(m_db, set_user_ver.c_str(), nullptr, nullptr, nullptr); if (ret != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to set the wallet schema version: %s\n", sqlite3_errstr(ret))); } } } bool SQLiteDatabase::Rewrite(const char* skip) { // Rewrite the database using the VACUUM command: https://sqlite.org/lang_vacuum.html int ret = sqlite3_exec(m_db, "VACUUM", nullptr, nullptr, nullptr); return ret == SQLITE_OK; } bool SQLiteDatabase::Backup(const std::string& dest) const { sqlite3* db_copy; int res = sqlite3_open(dest.c_str(), &db_copy); if (res != SQLITE_OK) { sqlite3_close(db_copy); return false; } sqlite3_backup* backup = sqlite3_backup_init(db_copy, "main", m_db, "main"); if (!backup) { LogPrintf("%s: Unable to begin backup: %s\n", __func__, sqlite3_errmsg(m_db)); sqlite3_close(db_copy); return false; } // Specifying -1 will copy all of the pages res = sqlite3_backup_step(backup, -1); if (res != SQLITE_DONE) { LogPrintf("%s: Unable to backup: %s\n", __func__, sqlite3_errstr(res)); sqlite3_backup_finish(backup); sqlite3_close(db_copy); return false; } res = sqlite3_backup_finish(backup); sqlite3_close(db_copy); return res == SQLITE_OK; } void SQLiteDatabase::Close() { int res = sqlite3_close(m_db); if (res != SQLITE_OK) { throw std::runtime_error(strprintf("SQLiteDatabase: Failed to close database: %s\n", sqlite3_errstr(res))); } m_db = nullptr; } std::unique_ptr SQLiteDatabase::MakeBatch(bool flush_on_close) { // We ignore flush_on_close because we don't do manual flushing for SQLite return MakeUnique(*this); } SQLiteBatch::SQLiteBatch(SQLiteDatabase& database) : m_database(database) { // Make sure we have a db handle assert(m_database.m_db); SetupSQLStatements(); } void SQLiteBatch::Close() { // If m_db is in a transaction (i.e. not in autocommit mode), then abort the transaction in progress if (m_database.m_db && sqlite3_get_autocommit(m_database.m_db) == 0) { if (TxnAbort()) { LogPrintf("SQLiteBatch: Batch closed unexpectedly without the transaction being explicitly committed or aborted\n"); } else { LogPrintf("SQLiteBatch: Batch closed and failed to abort transaction\n"); } } // Free all of the prepared statements int ret = sqlite3_finalize(m_read_stmt); if (ret != SQLITE_OK) { LogPrintf("SQLiteBatch: Batch closed but could not finalize read statement: %s\n", sqlite3_errstr(ret)); } ret = sqlite3_finalize(m_insert_stmt); if (ret != SQLITE_OK) { LogPrintf("SQLiteBatch: Batch closed but could not finalize insert statement: %s\n", sqlite3_errstr(ret)); } ret = sqlite3_finalize(m_overwrite_stmt); if (ret != SQLITE_OK) { LogPrintf("SQLiteBatch: Batch closed but could not finalize overwrite statement: %s\n", sqlite3_errstr(ret)); } ret = sqlite3_finalize(m_delete_stmt); if (ret != SQLITE_OK) { LogPrintf("SQLiteBatch: Batch closed but could not finalize delete statement: %s\n", sqlite3_errstr(ret)); } ret = sqlite3_finalize(m_cursor_stmt); if (ret != SQLITE_OK) { LogPrintf("SQLiteBatch: Batch closed but could not finalize cursor statement: %s\n", sqlite3_errstr(ret)); } m_read_stmt = nullptr; m_insert_stmt = nullptr; m_overwrite_stmt = nullptr; m_delete_stmt = nullptr; m_cursor_stmt = nullptr; } bool SQLiteBatch::ReadKey(CDataStream&& key, CDataStream& value) { if (!m_database.m_db) return false; assert(m_read_stmt); // Bind: leftmost parameter in statement is index 1 int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC); if (res != SQLITE_OK) { LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res)); sqlite3_clear_bindings(m_read_stmt); sqlite3_reset(m_read_stmt); return false; } res = sqlite3_step(m_read_stmt); if (res != SQLITE_ROW) { if (res != SQLITE_DONE) { // SQLITE_DONE means "not found", don't log an error in that case. LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res)); } sqlite3_clear_bindings(m_read_stmt); sqlite3_reset(m_read_stmt); return false; } // Leftmost column in result is index 0 const char* data = reinterpret_cast(sqlite3_column_blob(m_read_stmt, 0)); int data_size = sqlite3_column_bytes(m_read_stmt, 0); value.write(data, data_size); sqlite3_clear_bindings(m_read_stmt); sqlite3_reset(m_read_stmt); return true; } bool SQLiteBatch::WriteKey(CDataStream&& key, CDataStream&& value, bool overwrite) { if (!m_database.m_db) return false; assert(m_insert_stmt && m_overwrite_stmt); sqlite3_stmt* stmt; if (overwrite) { stmt = m_overwrite_stmt; } else { stmt = m_insert_stmt; } // Bind: leftmost parameter in statement is index 1 // Insert index 1 is key, 2 is value int res = sqlite3_bind_blob(stmt, 1, key.data(), key.size(), SQLITE_STATIC); if (res != SQLITE_OK) { LogPrintf("%s: Unable to bind key to statement: %s\n", __func__, sqlite3_errstr(res)); sqlite3_clear_bindings(stmt); sqlite3_reset(stmt); return false; } res = sqlite3_bind_blob(stmt, 2, value.data(), value.size(), SQLITE_STATIC); if (res != SQLITE_OK) { LogPrintf("%s: Unable to bind value to statement: %s\n", __func__, sqlite3_errstr(res)); sqlite3_clear_bindings(stmt); sqlite3_reset(stmt); return false; } // Execute res = sqlite3_step(stmt); sqlite3_clear_bindings(stmt); sqlite3_reset(stmt); if (res != SQLITE_DONE) { LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res)); } return res == SQLITE_DONE; } bool SQLiteBatch::EraseKey(CDataStream&& key) { if (!m_database.m_db) return false; assert(m_delete_stmt); // Bind: leftmost parameter in statement is index 1 int res = sqlite3_bind_blob(m_delete_stmt, 1, key.data(), key.size(), SQLITE_STATIC); if (res != SQLITE_OK) { LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res)); sqlite3_clear_bindings(m_delete_stmt); sqlite3_reset(m_delete_stmt); return false; } // Execute res = sqlite3_step(m_delete_stmt); sqlite3_clear_bindings(m_delete_stmt); sqlite3_reset(m_delete_stmt); if (res != SQLITE_DONE) { LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res)); } return res == SQLITE_DONE; } bool SQLiteBatch::HasKey(CDataStream&& key) { if (!m_database.m_db) return false; assert(m_read_stmt); // Bind: leftmost parameter in statement is index 1 bool ret = false; int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC); if (res == SQLITE_OK) { res = sqlite3_step(m_read_stmt); if (res == SQLITE_ROW) { ret = true; } } sqlite3_clear_bindings(m_read_stmt); sqlite3_reset(m_read_stmt); return ret; } bool SQLiteBatch::StartCursor() { assert(!m_cursor_init); if (!m_database.m_db) return false; m_cursor_init = true; return true; } bool SQLiteBatch::ReadAtCursor(CDataStream& key, CDataStream& value, bool& complete) { complete = false; if (!m_cursor_init) return false; int res = sqlite3_step(m_cursor_stmt); if (res == SQLITE_DONE) { complete = true; return true; } if (res != SQLITE_ROW) { LogPrintf("SQLiteBatch::ReadAtCursor: Unable to execute cursor step: %s\n", sqlite3_errstr(res)); return false; } // Leftmost column in result is index 0 const char* key_data = reinterpret_cast(sqlite3_column_blob(m_cursor_stmt, 0)); int key_data_size = sqlite3_column_bytes(m_cursor_stmt, 0); key.write(key_data, key_data_size); const char* value_data = reinterpret_cast(sqlite3_column_blob(m_cursor_stmt, 1)); int value_data_size = sqlite3_column_bytes(m_cursor_stmt, 1); value.write(value_data, value_data_size); return true; } void SQLiteBatch::CloseCursor() { sqlite3_reset(m_cursor_stmt); m_cursor_init = false; } bool SQLiteBatch::TxnBegin() { if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) == 0) return false; int res = sqlite3_exec(m_database.m_db, "BEGIN TRANSACTION", nullptr, nullptr, nullptr); if (res != SQLITE_OK) { LogPrintf("SQLiteBatch: Failed to begin the transaction\n"); } return res == SQLITE_OK; } bool SQLiteBatch::TxnCommit() { if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false; int res = sqlite3_exec(m_database.m_db, "COMMIT TRANSACTION", nullptr, nullptr, nullptr); if (res != SQLITE_OK) { LogPrintf("SQLiteBatch: Failed to commit the transaction\n"); } return res == SQLITE_OK; } bool SQLiteBatch::TxnAbort() { if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false; int res = sqlite3_exec(m_database.m_db, "ROLLBACK TRANSACTION", nullptr, nullptr, nullptr); if (res != SQLITE_OK) { LogPrintf("SQLiteBatch: Failed to abort the transaction\n"); } return res == SQLITE_OK; } bool ExistsSQLiteDatabase(const fs::path& path) { const fs::path file = path / DATABASE_FILENAME; return fs::symlink_status(file).type() == fs::regular_file && IsSQLiteFile(file); } std::unique_ptr MakeSQLiteDatabase(const fs::path& path, const DatabaseOptions& options, DatabaseStatus& status, bilingual_str& error) { const fs::path file = path / DATABASE_FILENAME; try { auto db = MakeUnique(path, file); if (options.verify && !db->Verify(error)) { status = DatabaseStatus::FAILED_VERIFY; return nullptr; } status = DatabaseStatus::SUCCESS; return db; } catch (const std::runtime_error& e) { status = DatabaseStatus::FAILED_LOAD; error = Untranslated(e.what()); return nullptr; } } std::string SQLiteDatabaseVersion() { return std::string(sqlite3_libversion()); } bool IsSQLiteFile(const fs::path& path) { if (!fs::exists(path)) return false; // A SQLite Database file is at least 512 bytes. boost::system::error_code ec; auto size = fs::file_size(path, ec); if (ec) LogPrintf("%s: %s %s\n", __func__, ec.message(), path.string()); if (size < 512) return false; fsbridge::ifstream file(path, std::ios::binary); if (!file.is_open()) return false; // Magic is at beginning and is 16 bytes long char magic[16]; file.read(magic, 16); // Application id is at offset 68 and 4 bytes long file.seekg(68, std::ios::beg); char app_id[4]; file.read(app_id, 4); file.close(); // Check the magic, see https://sqlite.org/fileformat2.html std::string magic_str(magic, 16); if (magic_str != std::string("SQLite format 3", 16)) { return false; } // Check the application id matches our network magic return memcmp(Params().MessageStart(), app_id, 4) == 0; }