// Copyright (c) 2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <consensus/amount.h> #include <consensus/validation.h> #include <interfaces/chain.h> #include <policy/policy.h> #include <script/signingprovider.h> #include <util/check.h> #include <util/fees.h> #include <util/moneystr.h> #include <util/rbf.h> #include <util/trace.h> #include <util/translation.h> #include <wallet/coincontrol.h> #include <wallet/fees.h> #include <wallet/receive.h> #include <wallet/spend.h> #include <wallet/transaction.h> #include <wallet/wallet.h> #include <cmath> using interfaces::FoundBlock; namespace wallet { static constexpr size_t OUTPUT_GROUP_MAX_ENTRIES{100}; int CalculateMaximumSignedInputSize(const CTxOut& txout, const COutPoint outpoint, const SigningProvider* provider, const CCoinControl* coin_control) { CMutableTransaction txn; txn.vin.push_back(CTxIn(outpoint)); if (!provider || !DummySignInput(*provider, txn.vin[0], txout, coin_control)) { return -1; } return GetVirtualTransactionInputSize(txn.vin[0]); } int CalculateMaximumSignedInputSize(const CTxOut& txout, const CWallet* wallet, const CCoinControl* coin_control) { const std::unique_ptr<SigningProvider> provider = wallet->GetSolvingProvider(txout.scriptPubKey); return CalculateMaximumSignedInputSize(txout, COutPoint(), provider.get(), coin_control); } // txouts needs to be in the order of tx.vin TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, const std::vector<CTxOut>& txouts, const CCoinControl* coin_control) { CMutableTransaction txNew(tx); if (!wallet->DummySignTx(txNew, txouts, coin_control)) { return TxSize{-1, -1}; } CTransaction ctx(txNew); int64_t vsize = GetVirtualTransactionSize(ctx); int64_t weight = GetTransactionWeight(ctx); return TxSize{vsize, weight}; } TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, const CCoinControl* coin_control) { std::vector<CTxOut> txouts; // Look up the inputs. The inputs are either in the wallet, or in coin_control. for (const CTxIn& input : tx.vin) { const auto mi = wallet->mapWallet.find(input.prevout.hash); // Can not estimate size without knowing the input details if (mi != wallet->mapWallet.end()) { assert(input.prevout.n < mi->second.tx->vout.size()); txouts.emplace_back(mi->second.tx->vout.at(input.prevout.n)); } else if (coin_control) { CTxOut txout; if (!coin_control->GetExternalOutput(input.prevout, txout)) { return TxSize{-1, -1}; } txouts.emplace_back(txout); } else { return TxSize{-1, -1}; } } return CalculateMaximumSignedTxSize(tx, wallet, txouts, coin_control); } uint64_t CoinsResult::size() const { return bech32m.size() + bech32.size() + P2SH_segwit.size() + legacy.size() + other.size(); } std::vector<COutput> CoinsResult::all() const { std::vector<COutput> all; all.reserve(this->size()); all.insert(all.end(), bech32m.begin(), bech32m.end()); all.insert(all.end(), bech32.begin(), bech32.end()); all.insert(all.end(), P2SH_segwit.begin(), P2SH_segwit.end()); all.insert(all.end(), legacy.begin(), legacy.end()); all.insert(all.end(), other.begin(), other.end()); return all; } void CoinsResult::clear() { bech32m.clear(); bech32.clear(); P2SH_segwit.clear(); legacy.clear(); other.clear(); } CoinsResult AvailableCoins(const CWallet& wallet, const CCoinControl* coinControl, std::optional<CFeeRate> feerate, const CAmount& nMinimumAmount, const CAmount& nMaximumAmount, const CAmount& nMinimumSumAmount, const uint64_t nMaximumCount, bool only_spendable) { AssertLockHeld(wallet.cs_wallet); CoinsResult result; // Either the WALLET_FLAG_AVOID_REUSE flag is not set (in which case we always allow), or we default to avoiding, and only in the case where // a coin control object is provided, and has the avoid address reuse flag set to false, do we allow already used addresses bool allow_used_addresses = !wallet.IsWalletFlagSet(WALLET_FLAG_AVOID_REUSE) || (coinControl && !coinControl->m_avoid_address_reuse); const int min_depth = {coinControl ? coinControl->m_min_depth : DEFAULT_MIN_DEPTH}; const int max_depth = {coinControl ? coinControl->m_max_depth : DEFAULT_MAX_DEPTH}; const bool only_safe = {coinControl ? !coinControl->m_include_unsafe_inputs : true}; std::set<uint256> trusted_parents; for (const auto& entry : wallet.mapWallet) { const uint256& wtxid = entry.first; const CWalletTx& wtx = entry.second; if (wallet.IsTxImmatureCoinBase(wtx)) continue; int nDepth = wallet.GetTxDepthInMainChain(wtx); if (nDepth < 0) continue; // We should not consider coins which aren't at least in our mempool // It's possible for these to be conflicted via ancestors which we may never be able to detect if (nDepth == 0 && !wtx.InMempool()) continue; bool safeTx = CachedTxIsTrusted(wallet, wtx, trusted_parents); // We should not consider coins from transactions that are replacing // other transactions. // // Example: There is a transaction A which is replaced by bumpfee // transaction B. In this case, we want to prevent creation of // a transaction B' which spends an output of B. // // Reason: If transaction A were initially confirmed, transactions B // and B' would no longer be valid, so the user would have to create // a new transaction C to replace B'. However, in the case of a // one-block reorg, transactions B' and C might BOTH be accepted, // when the user only wanted one of them. Specifically, there could // be a 1-block reorg away from the chain where transactions A and C // were accepted to another chain where B, B', and C were all // accepted. if (nDepth == 0 && wtx.mapValue.count("replaces_txid")) { safeTx = false; } // Similarly, we should not consider coins from transactions that // have been replaced. In the example above, we would want to prevent // creation of a transaction A' spending an output of A, because if // transaction B were initially confirmed, conflicting with A and // A', we wouldn't want to the user to create a transaction D // intending to replace A', but potentially resulting in a scenario // where A, A', and D could all be accepted (instead of just B and // D, or just A and A' like the user would want). if (nDepth == 0 && wtx.mapValue.count("replaced_by_txid")) { safeTx = false; } if (only_safe && !safeTx) { continue; } if (nDepth < min_depth || nDepth > max_depth) { continue; } bool tx_from_me = CachedTxIsFromMe(wallet, wtx, ISMINE_ALL); for (unsigned int i = 0; i < wtx.tx->vout.size(); i++) { const CTxOut& output = wtx.tx->vout[i]; const COutPoint outpoint(wtxid, i); if (output.nValue < nMinimumAmount || output.nValue > nMaximumAmount) continue; if (coinControl && coinControl->HasSelected() && !coinControl->m_allow_other_inputs && !coinControl->IsSelected(outpoint)) continue; if (wallet.IsLockedCoin(outpoint)) continue; if (wallet.IsSpent(outpoint)) continue; isminetype mine = wallet.IsMine(output); if (mine == ISMINE_NO) { continue; } if (!allow_used_addresses && wallet.IsSpentKey(output.scriptPubKey)) { continue; } std::unique_ptr<SigningProvider> provider = wallet.GetSolvingProvider(output.scriptPubKey); bool solvable = provider ? IsSolvable(*provider, output.scriptPubKey) : false; bool spendable = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (((mine & ISMINE_WATCH_ONLY) != ISMINE_NO) && (coinControl && coinControl->fAllowWatchOnly && solvable)); // Filter by spendable outputs only if (!spendable && only_spendable) continue; // When parsing a scriptPubKey, Solver returns the parsed pubkeys or hashes (depending on the script) // We don't need those here, so we are leaving them in return_values_unused std::vector<std::vector<uint8_t>> return_values_unused; TxoutType type; bool is_from_p2sh{false}; // If the Output is P2SH and spendable, we want to know if it is // a P2SH (legacy) or one of P2SH-P2WPKH, P2SH-P2WSH (P2SH-Segwit). We can determine // this from the redeemScript. If the Output is not spendable, it will be classified // as a P2SH (legacy), since we have no way of knowing otherwise without the redeemScript if (output.scriptPubKey.IsPayToScriptHash() && solvable) { CScript redeemScript; CTxDestination destination; if (!ExtractDestination(output.scriptPubKey, destination)) continue; const CScriptID& hash = CScriptID(std::get<ScriptHash>(destination)); if (!provider->GetCScript(hash, redeemScript)) continue; type = Solver(redeemScript, return_values_unused); is_from_p2sh = true; } else { type = Solver(output.scriptPubKey, return_values_unused); } int input_bytes = CalculateMaximumSignedInputSize(output, COutPoint(), provider.get(), coinControl); COutput coin(outpoint, output, nDepth, input_bytes, spendable, solvable, safeTx, wtx.GetTxTime(), tx_from_me, feerate); switch (type) { case TxoutType::WITNESS_UNKNOWN: case TxoutType::WITNESS_V1_TAPROOT: result.bech32m.push_back(coin); break; case TxoutType::WITNESS_V0_KEYHASH: case TxoutType::WITNESS_V0_SCRIPTHASH: if (is_from_p2sh) { result.P2SH_segwit.push_back(coin); break; } result.bech32.push_back(coin); break; case TxoutType::SCRIPTHASH: case TxoutType::PUBKEYHASH: result.legacy.push_back(coin); break; default: result.other.push_back(coin); }; // Cache total amount as we go result.total_amount += output.nValue; // Checks the sum amount of all UTXO's. if (nMinimumSumAmount != MAX_MONEY) { if (result.total_amount >= nMinimumSumAmount) { return result; } } // Checks the maximum number of UTXO's. if (nMaximumCount > 0 && result.size() >= nMaximumCount) { return result; } } } return result; } CoinsResult AvailableCoinsListUnspent(const CWallet& wallet, const CCoinControl* coinControl, const CAmount& nMinimumAmount, const CAmount& nMaximumAmount, const CAmount& nMinimumSumAmount, const uint64_t nMaximumCount) { return AvailableCoins(wallet, coinControl, /*feerate=*/ std::nullopt, nMinimumAmount, nMaximumAmount, nMinimumSumAmount, nMaximumCount, /*only_spendable=*/false); } CAmount GetAvailableBalance(const CWallet& wallet, const CCoinControl* coinControl) { LOCK(wallet.cs_wallet); return AvailableCoins(wallet, coinControl, /*feerate=*/ std::nullopt, /*nMinimumAmount=*/ 1, /*nMaximumAmount=*/ MAX_MONEY, /*nMinimumSumAmount=*/ MAX_MONEY, /*nMaximumCount=*/ 0 ).total_amount; } const CTxOut& FindNonChangeParentOutput(const CWallet& wallet, const CTransaction& tx, int output) { AssertLockHeld(wallet.cs_wallet); const CTransaction* ptx = &tx; int n = output; while (OutputIsChange(wallet, ptx->vout[n]) && ptx->vin.size() > 0) { const COutPoint& prevout = ptx->vin[0].prevout; auto it = wallet.mapWallet.find(prevout.hash); if (it == wallet.mapWallet.end() || it->second.tx->vout.size() <= prevout.n || !wallet.IsMine(it->second.tx->vout[prevout.n])) { break; } ptx = it->second.tx.get(); n = prevout.n; } return ptx->vout[n]; } const CTxOut& FindNonChangeParentOutput(const CWallet& wallet, const COutPoint& outpoint) { AssertLockHeld(wallet.cs_wallet); return FindNonChangeParentOutput(wallet, *wallet.GetWalletTx(outpoint.hash)->tx, outpoint.n); } std::map<CTxDestination, std::vector<COutput>> ListCoins(const CWallet& wallet) { AssertLockHeld(wallet.cs_wallet); std::map<CTxDestination, std::vector<COutput>> result; for (const COutput& coin : AvailableCoinsListUnspent(wallet).all()) { CTxDestination address; if ((coin.spendable || (wallet.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS) && coin.solvable)) && ExtractDestination(FindNonChangeParentOutput(wallet, coin.outpoint).scriptPubKey, address)) { result[address].emplace_back(std::move(coin)); } } std::vector<COutPoint> lockedCoins; wallet.ListLockedCoins(lockedCoins); // Include watch-only for LegacyScriptPubKeyMan wallets without private keys const bool include_watch_only = wallet.GetLegacyScriptPubKeyMan() && wallet.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS); const isminetype is_mine_filter = include_watch_only ? ISMINE_WATCH_ONLY : ISMINE_SPENDABLE; for (const COutPoint& output : lockedCoins) { auto it = wallet.mapWallet.find(output.hash); if (it != wallet.mapWallet.end()) { const auto& wtx = it->second; int depth = wallet.GetTxDepthInMainChain(wtx); if (depth >= 0 && output.n < wtx.tx->vout.size() && wallet.IsMine(wtx.tx->vout[output.n]) == is_mine_filter ) { CTxDestination address; if (ExtractDestination(FindNonChangeParentOutput(wallet, *wtx.tx, output.n).scriptPubKey, address)) { const auto out = wtx.tx->vout.at(output.n); result[address].emplace_back( COutPoint(wtx.GetHash(), output.n), out, depth, CalculateMaximumSignedInputSize(out, &wallet, /*coin_control=*/nullptr), /*spendable=*/ true, /*solvable=*/ true, /*safe=*/ false, wtx.GetTxTime(), CachedTxIsFromMe(wallet, wtx, ISMINE_ALL)); } } } } return result; } std::vector<OutputGroup> GroupOutputs(const CWallet& wallet, const std::vector<COutput>& outputs, const CoinSelectionParams& coin_sel_params, const CoinEligibilityFilter& filter, bool positive_only) { std::vector<OutputGroup> groups_out; if (!coin_sel_params.m_avoid_partial_spends) { // Allowing partial spends means no grouping. Each COutput gets its own OutputGroup. for (const COutput& output : outputs) { // Skip outputs we cannot spend if (!output.spendable) continue; size_t ancestors, descendants; wallet.chain().getTransactionAncestry(output.outpoint.hash, ancestors, descendants); // Make an OutputGroup containing just this output OutputGroup group{coin_sel_params}; group.Insert(output, ancestors, descendants, positive_only); // Check the OutputGroup's eligibility. Only add the eligible ones. if (positive_only && group.GetSelectionAmount() <= 0) continue; if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group); } return groups_out; } // We want to combine COutputs that have the same scriptPubKey into single OutputGroups // except when there are more than OUTPUT_GROUP_MAX_ENTRIES COutputs grouped in an OutputGroup. // To do this, we maintain a map where the key is the scriptPubKey and the value is a vector of OutputGroups. // For each COutput, we check if the scriptPubKey is in the map, and if it is, the COutput is added // to the last OutputGroup in the vector for the scriptPubKey. When the last OutputGroup has // OUTPUT_GROUP_MAX_ENTRIES COutputs, a new OutputGroup is added to the end of the vector. std::map<CScript, std::vector<OutputGroup>> spk_to_groups_map; for (const auto& output : outputs) { // Skip outputs we cannot spend if (!output.spendable) continue; size_t ancestors, descendants; wallet.chain().getTransactionAncestry(output.outpoint.hash, ancestors, descendants); CScript spk = output.txout.scriptPubKey; std::vector<OutputGroup>& groups = spk_to_groups_map[spk]; if (groups.size() == 0) { // No OutputGroups for this scriptPubKey yet, add one groups.emplace_back(coin_sel_params); } // Get the last OutputGroup in the vector so that we can add the COutput to it // A pointer is used here so that group can be reassigned later if it is full. OutputGroup* group = &groups.back(); // Check if this OutputGroup is full. We limit to OUTPUT_GROUP_MAX_ENTRIES when using -avoidpartialspends // to avoid surprising users with very high fees. if (group->m_outputs.size() >= OUTPUT_GROUP_MAX_ENTRIES) { // The last output group is full, add a new group to the vector and use that group for the insertion groups.emplace_back(coin_sel_params); group = &groups.back(); } // Add the output to group group->Insert(output, ancestors, descendants, positive_only); } // Now we go through the entire map and pull out the OutputGroups for (const auto& spk_and_groups_pair: spk_to_groups_map) { const std::vector<OutputGroup>& groups_per_spk= spk_and_groups_pair.second; // Go through the vector backwards. This allows for the first item we deal with being the partial group. for (auto group_it = groups_per_spk.rbegin(); group_it != groups_per_spk.rend(); group_it++) { const OutputGroup& group = *group_it; // Don't include partial groups if there are full groups too and we don't want partial groups if (group_it == groups_per_spk.rbegin() && groups_per_spk.size() > 1 && !filter.m_include_partial_groups) { continue; } // Check the OutputGroup's eligibility. Only add the eligible ones. if (positive_only && group.GetSelectionAmount() <= 0) continue; if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group); } } return groups_out; } std::optional<SelectionResult> AttemptSelection(const CWallet& wallet, const CAmount& nTargetValue, const CoinEligibilityFilter& eligibility_filter, const CoinsResult& available_coins, const CoinSelectionParams& coin_selection_params, bool allow_mixed_output_types) { // Run coin selection on each OutputType and compute the Waste Metric std::vector<SelectionResult> results; if (auto result{ChooseSelectionResult(wallet, nTargetValue, eligibility_filter, available_coins.legacy, coin_selection_params)}) { results.push_back(*result); } if (auto result{ChooseSelectionResult(wallet, nTargetValue, eligibility_filter, available_coins.P2SH_segwit, coin_selection_params)}) { results.push_back(*result); } if (auto result{ChooseSelectionResult(wallet, nTargetValue, eligibility_filter, available_coins.bech32, coin_selection_params)}) { results.push_back(*result); } if (auto result{ChooseSelectionResult(wallet, nTargetValue, eligibility_filter, available_coins.bech32m, coin_selection_params)}) { results.push_back(*result); } // If we can't fund the transaction from any individual OutputType, run coin selection // over all available coins, else pick the best solution from the results if (results.size() == 0) { if (allow_mixed_output_types) { if (auto result{ChooseSelectionResult(wallet, nTargetValue, eligibility_filter, available_coins.all(), coin_selection_params)}) { return result; } } return std::optional<SelectionResult>(); }; std::optional<SelectionResult> result{*std::min_element(results.begin(), results.end())}; return result; }; std::optional<SelectionResult> ChooseSelectionResult(const CWallet& wallet, const CAmount& nTargetValue, const CoinEligibilityFilter& eligibility_filter, const std::vector<COutput>& available_coins, const CoinSelectionParams& coin_selection_params) { // Vector of results. We will choose the best one based on waste. std::vector<SelectionResult> results; // Note that unlike KnapsackSolver, we do not include the fee for creating a change output as BnB will not create a change output. std::vector<OutputGroup> positive_groups = GroupOutputs(wallet, available_coins, coin_selection_params, eligibility_filter, true /* positive_only */); if (auto bnb_result{SelectCoinsBnB(positive_groups, nTargetValue, coin_selection_params.m_cost_of_change)}) { results.push_back(*bnb_result); } // The knapsack solver has some legacy behavior where it will spend dust outputs. We retain this behavior, so don't filter for positive only here. std::vector<OutputGroup> all_groups = GroupOutputs(wallet, available_coins, coin_selection_params, eligibility_filter, false /* positive_only */); CAmount target_with_change = nTargetValue; // While nTargetValue includes the transaction fees for non-input things, it does not include the fee for creating a change output. // So we need to include that for KnapsackSolver and SRD as well, as we are expecting to create a change output. if (!coin_selection_params.m_subtract_fee_outputs) { target_with_change += coin_selection_params.m_change_fee; } if (auto knapsack_result{KnapsackSolver(all_groups, target_with_change, coin_selection_params.m_min_change_target, coin_selection_params.rng_fast)}) { knapsack_result->ComputeAndSetWaste(coin_selection_params.m_cost_of_change); results.push_back(*knapsack_result); } // Include change for SRD as we want to avoid making really small change if the selection just // barely meets the target. Just use the lower bound change target instead of the randomly // generated one, since SRD will result in a random change amount anyway; avoid making the // target needlessly large. const CAmount srd_target = target_with_change + CHANGE_LOWER; if (auto srd_result{SelectCoinsSRD(positive_groups, srd_target, coin_selection_params.rng_fast)}) { srd_result->ComputeAndSetWaste(coin_selection_params.m_cost_of_change); results.push_back(*srd_result); } if (results.size() == 0) { // No solution found return std::nullopt; } // Choose the result with the least waste // If the waste is the same, choose the one which spends more inputs. auto& best_result = *std::min_element(results.begin(), results.end()); return best_result; } std::optional<SelectionResult> SelectCoins(const CWallet& wallet, CoinsResult& available_coins, const CAmount& nTargetValue, const CCoinControl& coin_control, const CoinSelectionParams& coin_selection_params) { CAmount value_to_select = nTargetValue; OutputGroup preset_inputs(coin_selection_params); // calculate value from preset inputs and store them std::set<COutPoint> preset_coins; std::vector<COutPoint> vPresetInputs; coin_control.ListSelected(vPresetInputs); for (const COutPoint& outpoint : vPresetInputs) { int input_bytes = -1; CTxOut txout; auto ptr_wtx = wallet.GetWalletTx(outpoint.hash); if (ptr_wtx) { // Clearly invalid input, fail if (ptr_wtx->tx->vout.size() <= outpoint.n) { return std::nullopt; } txout = ptr_wtx->tx->vout.at(outpoint.n); input_bytes = CalculateMaximumSignedInputSize(txout, &wallet, &coin_control); } else { // The input is external. We did not find the tx in mapWallet. if (!coin_control.GetExternalOutput(outpoint, txout)) { return std::nullopt; } input_bytes = CalculateMaximumSignedInputSize(txout, outpoint, &coin_control.m_external_provider, &coin_control); } // If available, override calculated size with coin control specified size if (coin_control.HasInputWeight(outpoint)) { input_bytes = GetVirtualTransactionSize(coin_control.GetInputWeight(outpoint), 0, 0); } if (input_bytes == -1) { return std::nullopt; // Not solvable, can't estimate size for fee } /* Set some defaults for depth, spendable, solvable, safe, time, and from_me as these don't matter for preset inputs since no selection is being done. */ COutput output(outpoint, txout, /*depth=*/ 0, input_bytes, /*spendable=*/ true, /*solvable=*/ true, /*safe=*/ true, /*time=*/ 0, /*from_me=*/ false, coin_selection_params.m_effective_feerate); if (coin_selection_params.m_subtract_fee_outputs) { value_to_select -= output.txout.nValue; } else { value_to_select -= output.GetEffectiveValue(); } preset_coins.insert(outpoint); /* Set ancestors and descendants to 0 as they don't matter for preset inputs since no actual selection is being done. * positive_only is set to false because we want to include all preset inputs, even if they are dust. */ preset_inputs.Insert(output, /*ancestors=*/ 0, /*descendants=*/ 0, /*positive_only=*/ false); } // coin control -> return all selected outputs (we want all selected to go into the transaction for sure) if (coin_control.HasSelected() && !coin_control.m_allow_other_inputs) { SelectionResult result(nTargetValue, SelectionAlgorithm::MANUAL); result.AddInput(preset_inputs); if (result.GetSelectedValue() < nTargetValue) return std::nullopt; result.ComputeAndSetWaste(coin_selection_params.m_cost_of_change); return result; } // remove preset inputs from coins so that Coin Selection doesn't pick them. if (coin_control.HasSelected()) { available_coins.legacy.erase(remove_if(available_coins.legacy.begin(), available_coins.legacy.end(), [&](const COutput& c) { return preset_coins.count(c.outpoint); }), available_coins.legacy.end()); available_coins.P2SH_segwit.erase(remove_if(available_coins.P2SH_segwit.begin(), available_coins.P2SH_segwit.end(), [&](const COutput& c) { return preset_coins.count(c.outpoint); }), available_coins.P2SH_segwit.end()); available_coins.bech32.erase(remove_if(available_coins.bech32.begin(), available_coins.bech32.end(), [&](const COutput& c) { return preset_coins.count(c.outpoint); }), available_coins.bech32.end()); available_coins.bech32m.erase(remove_if(available_coins.bech32m.begin(), available_coins.bech32m.end(), [&](const COutput& c) { return preset_coins.count(c.outpoint); }), available_coins.bech32m.end()); available_coins.other.erase(remove_if(available_coins.other.begin(), available_coins.other.end(), [&](const COutput& c) { return preset_coins.count(c.outpoint); }), available_coins.other.end()); } unsigned int limit_ancestor_count = 0; unsigned int limit_descendant_count = 0; wallet.chain().getPackageLimits(limit_ancestor_count, limit_descendant_count); const size_t max_ancestors = (size_t)std::max<int64_t>(1, limit_ancestor_count); const size_t max_descendants = (size_t)std::max<int64_t>(1, limit_descendant_count); const bool fRejectLongChains = gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS); // form groups from remaining coins; note that preset coins will not // automatically have their associated (same address) coins included if (coin_control.m_avoid_partial_spends && available_coins.size() > OUTPUT_GROUP_MAX_ENTRIES) { // Cases where we have 101+ outputs all pointing to the same destination may result in // privacy leaks as they will potentially be deterministically sorted. We solve that by // explicitly shuffling the outputs before processing Shuffle(available_coins.legacy.begin(), available_coins.legacy.end(), coin_selection_params.rng_fast); Shuffle(available_coins.P2SH_segwit.begin(), available_coins.P2SH_segwit.end(), coin_selection_params.rng_fast); Shuffle(available_coins.bech32.begin(), available_coins.bech32.end(), coin_selection_params.rng_fast); Shuffle(available_coins.bech32m.begin(), available_coins.bech32m.end(), coin_selection_params.rng_fast); Shuffle(available_coins.other.begin(), available_coins.other.end(), coin_selection_params.rng_fast); } // Coin Selection attempts to select inputs from a pool of eligible UTXOs to fund the // transaction at a target feerate. If an attempt fails, more attempts may be made using a more // permissive CoinEligibilityFilter. std::optional<SelectionResult> res = [&] { // Pre-selected inputs already cover the target amount. if (value_to_select <= 0) return std::make_optional(SelectionResult(nTargetValue, SelectionAlgorithm::MANUAL)); // If possible, fund the transaction with confirmed UTXOs only. Prefer at least six // confirmations on outputs received from other wallets and only spend confirmed change. if (auto r1{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(1, 6, 0), available_coins, coin_selection_params, /*allow_mixed_output_types=*/false)}) return r1; // Allow mixing only if no solution from any single output type can be found if (auto r2{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(1, 1, 0), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) return r2; // Fall back to using zero confirmation change (but with as few ancestors in the mempool as // possible) if we cannot fund the transaction otherwise. if (wallet.m_spend_zero_conf_change) { if (auto r3{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0, 1, 2), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) return r3; if (auto r4{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0, 1, std::min((size_t)4, max_ancestors/3), std::min((size_t)4, max_descendants/3)), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) { return r4; } if (auto r5{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0, 1, max_ancestors/2, max_descendants/2), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) { return r5; } // If partial groups are allowed, relax the requirement of spending OutputGroups (groups // of UTXOs sent to the same address, which are obviously controlled by a single wallet) // in their entirety. if (auto r6{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0, 1, max_ancestors-1, max_descendants-1, true /* include_partial_groups */), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) { return r6; } // Try with unsafe inputs if they are allowed. This may spend unconfirmed outputs // received from other wallets. if (coin_control.m_include_unsafe_inputs) { if (auto r7{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0 /* conf_mine */, 0 /* conf_theirs */, max_ancestors-1, max_descendants-1, true /* include_partial_groups */), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) { return r7; } } // Try with unlimited ancestors/descendants. The transaction will still need to meet // mempool ancestor/descendant policy to be accepted to mempool and broadcasted, but // OutputGroups use heuristics that may overestimate ancestor/descendant counts. if (!fRejectLongChains) { if (auto r8{AttemptSelection(wallet, value_to_select, CoinEligibilityFilter(0, 1, std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max(), true /* include_partial_groups */), available_coins, coin_selection_params, /*allow_mixed_output_types=*/true)}) { return r8; } } } // Coin Selection failed. return std::optional<SelectionResult>(); }(); if (!res) return std::nullopt; // Add preset inputs to result res->AddInput(preset_inputs); if (res->m_algo == SelectionAlgorithm::MANUAL) { res->ComputeAndSetWaste(coin_selection_params.m_cost_of_change); } return res; } static bool IsCurrentForAntiFeeSniping(interfaces::Chain& chain, const uint256& block_hash) { if (chain.isInitialBlockDownload()) { return false; } constexpr int64_t MAX_ANTI_FEE_SNIPING_TIP_AGE = 8 * 60 * 60; // in seconds int64_t block_time; CHECK_NONFATAL(chain.findBlock(block_hash, FoundBlock().time(block_time))); if (block_time < (GetTime() - MAX_ANTI_FEE_SNIPING_TIP_AGE)) { return false; } return true; } /** * Set a height-based locktime for new transactions (uses the height of the * current chain tip unless we are not synced with the current chain */ static void DiscourageFeeSniping(CMutableTransaction& tx, FastRandomContext& rng_fast, interfaces::Chain& chain, const uint256& block_hash, int block_height) { // All inputs must be added by now assert(!tx.vin.empty()); // Discourage fee sniping. // // For a large miner the value of the transactions in the best block and // the mempool can exceed the cost of deliberately attempting to mine two // blocks to orphan the current best block. By setting nLockTime such that // only the next block can include the transaction, we discourage this // practice as the height restricted and limited blocksize gives miners // considering fee sniping fewer options for pulling off this attack. // // A simple way to think about this is from the wallet's point of view we // always want the blockchain to move forward. By setting nLockTime this // way we're basically making the statement that we only want this // transaction to appear in the next block; we don't want to potentially // encourage reorgs by allowing transactions to appear at lower heights // than the next block in forks of the best chain. // // Of course, the subsidy is high enough, and transaction volume low // enough, that fee sniping isn't a problem yet, but by implementing a fix // now we ensure code won't be written that makes assumptions about // nLockTime that preclude a fix later. if (IsCurrentForAntiFeeSniping(chain, block_hash)) { tx.nLockTime = block_height; // Secondly occasionally randomly pick a nLockTime even further back, so // that transactions that are delayed after signing for whatever reason, // e.g. high-latency mix networks and some CoinJoin implementations, have // better privacy. if (rng_fast.randrange(10) == 0) { tx.nLockTime = std::max(0, int(tx.nLockTime) - int(rng_fast.randrange(100))); } } else { // If our chain is lagging behind, we can't discourage fee sniping nor help // the privacy of high-latency transactions. To avoid leaking a potentially // unique "nLockTime fingerprint", set nLockTime to a constant. tx.nLockTime = 0; } // Sanity check all values assert(tx.nLockTime < LOCKTIME_THRESHOLD); // Type must be block height assert(tx.nLockTime <= uint64_t(block_height)); for (const auto& in : tx.vin) { // Can not be FINAL for locktime to work assert(in.nSequence != CTxIn::SEQUENCE_FINAL); // May be MAX NONFINAL to disable both BIP68 and BIP125 if (in.nSequence == CTxIn::MAX_SEQUENCE_NONFINAL) continue; // May be MAX BIP125 to disable BIP68 and enable BIP125 if (in.nSequence == MAX_BIP125_RBF_SEQUENCE) continue; // The wallet does not support any other sequence-use right now. assert(false); } } static BResult<CreatedTransactionResult> CreateTransactionInternal( CWallet& wallet, const std::vector<CRecipient>& vecSend, int change_pos, const CCoinControl& coin_control, bool sign) EXCLUSIVE_LOCKS_REQUIRED(wallet.cs_wallet) { AssertLockHeld(wallet.cs_wallet); // out variables, to be packed into returned result structure CAmount nFeeRet; int nChangePosInOut = change_pos; FastRandomContext rng_fast; CMutableTransaction txNew; // The resulting transaction that we make CoinSelectionParams coin_selection_params{rng_fast}; // Parameters for coin selection, init with dummy coin_selection_params.m_avoid_partial_spends = coin_control.m_avoid_partial_spends; // Set the long term feerate estimate to the wallet's consolidate feerate coin_selection_params.m_long_term_feerate = wallet.m_consolidate_feerate; CAmount recipients_sum = 0; const OutputType change_type = wallet.TransactionChangeType(coin_control.m_change_type ? *coin_control.m_change_type : wallet.m_default_change_type, vecSend); ReserveDestination reservedest(&wallet, change_type); unsigned int outputs_to_subtract_fee_from = 0; // The number of outputs which we are subtracting the fee from for (const auto& recipient : vecSend) { recipients_sum += recipient.nAmount; if (recipient.fSubtractFeeFromAmount) { outputs_to_subtract_fee_from++; coin_selection_params.m_subtract_fee_outputs = true; } } coin_selection_params.m_change_target = GenerateChangeTarget(std::floor(recipients_sum / vecSend.size()), rng_fast); // Create change script that will be used if we need change CScript scriptChange; bilingual_str error; // possible error str // coin control: send change to custom address if (!std::get_if<CNoDestination>(&coin_control.destChange)) { scriptChange = GetScriptForDestination(coin_control.destChange); } else { // no coin control: send change to newly generated address // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool. If it fails, provide a dummy // destination in case we don't need change. CTxDestination dest; bilingual_str dest_err; if (!reservedest.GetReservedDestination(dest, true, dest_err)) { error = _("Transaction needs a change address, but we can't generate it.") + Untranslated(" ") + dest_err; } scriptChange = GetScriptForDestination(dest); // A valid destination implies a change script (and // vice-versa). An empty change script will abort later, if the // change keypool ran out, but change is required. CHECK_NONFATAL(IsValidDestination(dest) != scriptChange.empty()); } CTxOut change_prototype_txout(0, scriptChange); coin_selection_params.change_output_size = GetSerializeSize(change_prototype_txout); // Get size of spending the change output int change_spend_size = CalculateMaximumSignedInputSize(change_prototype_txout, &wallet); // If the wallet doesn't know how to sign change output, assume p2sh-p2wpkh // as lower-bound to allow BnB to do it's thing if (change_spend_size == -1) { coin_selection_params.change_spend_size = DUMMY_NESTED_P2WPKH_INPUT_SIZE; } else { coin_selection_params.change_spend_size = (size_t)change_spend_size; } // Set discard feerate coin_selection_params.m_discard_feerate = GetDiscardRate(wallet); // Get the fee rate to use effective values in coin selection FeeCalculation feeCalc; coin_selection_params.m_effective_feerate = GetMinimumFeeRate(wallet, coin_control, &feeCalc); // Do not, ever, assume that it's fine to change the fee rate if the user has explicitly // provided one if (coin_control.m_feerate && coin_selection_params.m_effective_feerate > *coin_control.m_feerate) { return strprintf(_("Fee rate (%s) is lower than the minimum fee rate setting (%s)"), coin_control.m_feerate->ToString(FeeEstimateMode::SAT_VB), coin_selection_params.m_effective_feerate.ToString(FeeEstimateMode::SAT_VB)); } if (feeCalc.reason == FeeReason::FALLBACK && !wallet.m_allow_fallback_fee) { // eventually allow a fallback fee return _("Fee estimation failed. Fallbackfee is disabled. Wait a few blocks or enable -fallbackfee."); } // Calculate the cost of change // Cost of change is the cost of creating the change output + cost of spending the change output in the future. // For creating the change output now, we use the effective feerate. // For spending the change output in the future, we use the discard feerate for now. // So cost of change = (change output size * effective feerate) + (size of spending change output * discard feerate) coin_selection_params.m_change_fee = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.change_output_size); coin_selection_params.m_cost_of_change = coin_selection_params.m_discard_feerate.GetFee(coin_selection_params.change_spend_size) + coin_selection_params.m_change_fee; // vouts to the payees if (!coin_selection_params.m_subtract_fee_outputs) { coin_selection_params.tx_noinputs_size = 10; // Static vsize overhead + outputs vsize. 4 nVersion, 4 nLocktime, 1 input count, 1 witness overhead (dummy, flag, stack size) coin_selection_params.tx_noinputs_size += GetSizeOfCompactSize(vecSend.size()); // bytes for output count } for (const auto& recipient : vecSend) { CTxOut txout(recipient.nAmount, recipient.scriptPubKey); // Include the fee cost for outputs. if (!coin_selection_params.m_subtract_fee_outputs) { coin_selection_params.tx_noinputs_size += ::GetSerializeSize(txout, PROTOCOL_VERSION); } if (IsDust(txout, wallet.chain().relayDustFee())) { return _("Transaction amount too small"); } txNew.vout.push_back(txout); } // Include the fees for things that aren't inputs, excluding the change output const CAmount not_input_fees = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.tx_noinputs_size); CAmount selection_target = recipients_sum + not_input_fees; // Get available coins auto available_coins = AvailableCoins(wallet, &coin_control, coin_selection_params.m_effective_feerate, 1, /*nMinimumAmount*/ MAX_MONEY, /*nMaximumAmount*/ MAX_MONEY, /*nMinimumSumAmount*/ 0); /*nMaximumCount*/ // Choose coins to use std::optional<SelectionResult> result = SelectCoins(wallet, available_coins, /*nTargetValue=*/selection_target, coin_control, coin_selection_params); if (!result) { return _("Insufficient funds"); } TRACE5(coin_selection, selected_coins, wallet.GetName().c_str(), GetAlgorithmName(result->m_algo).c_str(), result->m_target, result->GetWaste(), result->GetSelectedValue()); // Always make a change output // We will reduce the fee from this change output later, and remove the output if it is too small. const CAmount change_and_fee = result->GetSelectedValue() - recipients_sum; assert(change_and_fee >= 0); CTxOut newTxOut(change_and_fee, scriptChange); if (nChangePosInOut == -1) { // Insert change txn at random position: nChangePosInOut = rng_fast.randrange(txNew.vout.size() + 1); } else if ((unsigned int)nChangePosInOut > txNew.vout.size()) { return _("Transaction change output index out of range"); } assert(nChangePosInOut != -1); auto change_position = txNew.vout.insert(txNew.vout.begin() + nChangePosInOut, newTxOut); // Shuffle selected coins and fill in final vin std::vector<COutput> selected_coins = result->GetShuffledInputVector(); // The sequence number is set to non-maxint so that DiscourageFeeSniping // works. // // BIP125 defines opt-in RBF as any nSequence < maxint-1, so // we use the highest possible value in that range (maxint-2) // to avoid conflicting with other possible uses of nSequence, // and in the spirit of "smallest possible change from prior // behavior." const uint32_t nSequence{coin_control.m_signal_bip125_rbf.value_or(wallet.m_signal_rbf) ? MAX_BIP125_RBF_SEQUENCE : CTxIn::MAX_SEQUENCE_NONFINAL}; for (const auto& coin : selected_coins) { txNew.vin.push_back(CTxIn(coin.outpoint, CScript(), nSequence)); } DiscourageFeeSniping(txNew, rng_fast, wallet.chain(), wallet.GetLastBlockHash(), wallet.GetLastBlockHeight()); // Calculate the transaction fee TxSize tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), &wallet, &coin_control); int nBytes = tx_sizes.vsize; if (nBytes == -1) { return _("Missing solving data for estimating transaction size"); } nFeeRet = coin_selection_params.m_effective_feerate.GetFee(nBytes); // Subtract fee from the change output if not subtracting it from recipient outputs CAmount fee_needed = nFeeRet; if (!coin_selection_params.m_subtract_fee_outputs) { change_position->nValue -= fee_needed; } // We want to drop the change to fees if: // 1. The change output would be dust // 2. The change is within the (almost) exact match window, i.e. it is less than or equal to the cost of the change output (cost_of_change) CAmount change_amount = change_position->nValue; if (IsDust(*change_position, coin_selection_params.m_discard_feerate) || change_amount <= coin_selection_params.m_cost_of_change) { nChangePosInOut = -1; change_amount = 0; txNew.vout.erase(change_position); // Because we have dropped this change, the tx size and required fee will be different, so let's recalculate those tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), &wallet, &coin_control); nBytes = tx_sizes.vsize; fee_needed = coin_selection_params.m_effective_feerate.GetFee(nBytes); } // The only time that fee_needed should be less than the amount available for fees (in change_and_fee - change_amount) is when // we are subtracting the fee from the outputs. If this occurs at any other time, it is a bug. assert(coin_selection_params.m_subtract_fee_outputs || fee_needed <= change_and_fee - change_amount); // Update nFeeRet in case fee_needed changed due to dropping the change output if (fee_needed <= change_and_fee - change_amount) { nFeeRet = change_and_fee - change_amount; } // Reduce output values for subtractFeeFromAmount if (coin_selection_params.m_subtract_fee_outputs) { CAmount to_reduce = fee_needed + change_amount - change_and_fee; int i = 0; bool fFirst = true; for (const auto& recipient : vecSend) { if (i == nChangePosInOut) { ++i; } CTxOut& txout = txNew.vout[i]; if (recipient.fSubtractFeeFromAmount) { txout.nValue -= to_reduce / outputs_to_subtract_fee_from; // Subtract fee equally from each selected recipient if (fFirst) // first receiver pays the remainder not divisible by output count { fFirst = false; txout.nValue -= to_reduce % outputs_to_subtract_fee_from; } // Error if this output is reduced to be below dust if (IsDust(txout, wallet.chain().relayDustFee())) { if (txout.nValue < 0) { return _("The transaction amount is too small to pay the fee"); } else { return _("The transaction amount is too small to send after the fee has been deducted"); } } } ++i; } nFeeRet = fee_needed; } // Give up if change keypool ran out and change is required if (scriptChange.empty() && nChangePosInOut != -1) { return error; } if (sign && !wallet.SignTransaction(txNew)) { return _("Signing transaction failed"); } // Return the constructed transaction data. CTransactionRef tx = MakeTransactionRef(std::move(txNew)); // Limit size if ((sign && GetTransactionWeight(*tx) > MAX_STANDARD_TX_WEIGHT) || (!sign && tx_sizes.weight > MAX_STANDARD_TX_WEIGHT)) { return _("Transaction too large"); } if (nFeeRet > wallet.m_default_max_tx_fee) { return TransactionErrorString(TransactionError::MAX_FEE_EXCEEDED); } if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) { // Lastly, ensure this tx will pass the mempool's chain limits if (!wallet.chain().checkChainLimits(tx)) { return _("Transaction has too long of a mempool chain"); } } // Before we return success, we assume any change key will be used to prevent // accidental re-use. reservedest.KeepDestination(); wallet.WalletLogPrintf("Fee Calculation: Fee:%d Bytes:%u Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n", nFeeRet, nBytes, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay, feeCalc.est.pass.start, feeCalc.est.pass.end, (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) > 0.0 ? 100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) : 0.0, feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool, feeCalc.est.fail.start, feeCalc.est.fail.end, (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) > 0.0 ? 100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) : 0.0, feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool); return CreatedTransactionResult(tx, nFeeRet, nChangePosInOut, feeCalc); } BResult<CreatedTransactionResult> CreateTransaction( CWallet& wallet, const std::vector<CRecipient>& vecSend, int change_pos, const CCoinControl& coin_control, bool sign) { if (vecSend.empty()) { return _("Transaction must have at least one recipient"); } if (std::any_of(vecSend.cbegin(), vecSend.cend(), [](const auto& recipient){ return recipient.nAmount < 0; })) { return _("Transaction amounts must not be negative"); } LOCK(wallet.cs_wallet); auto res = CreateTransactionInternal(wallet, vecSend, change_pos, coin_control, sign); TRACE4(coin_selection, normal_create_tx_internal, wallet.GetName().c_str(), res.HasRes(), res ? res.GetObj().fee : 0, res ? res.GetObj().change_pos : 0); if (!res) return res; const auto& txr_ungrouped = res.GetObj(); // try with avoidpartialspends unless it's enabled already if (txr_ungrouped.fee > 0 /* 0 means non-functional fee rate estimation */ && wallet.m_max_aps_fee > -1 && !coin_control.m_avoid_partial_spends) { TRACE1(coin_selection, attempting_aps_create_tx, wallet.GetName().c_str()); CCoinControl tmp_cc = coin_control; tmp_cc.m_avoid_partial_spends = true; auto res_tx_grouped = CreateTransactionInternal(wallet, vecSend, change_pos, tmp_cc, sign); // Helper optional class for now std::optional<CreatedTransactionResult> txr_grouped{res_tx_grouped.HasRes() ? std::make_optional(res_tx_grouped.GetObj()) : std::nullopt}; // if fee of this alternative one is within the range of the max fee, we use this one const bool use_aps{txr_grouped.has_value() ? (txr_grouped->fee <= txr_ungrouped.fee + wallet.m_max_aps_fee) : false}; TRACE5(coin_selection, aps_create_tx_internal, wallet.GetName().c_str(), use_aps, txr_grouped.has_value(), txr_grouped.has_value() ? txr_grouped->fee : 0, txr_grouped.has_value() ? txr_grouped->change_pos : 0); if (txr_grouped) { wallet.WalletLogPrintf("Fee non-grouped = %lld, grouped = %lld, using %s\n", txr_ungrouped.fee, txr_grouped->fee, use_aps ? "grouped" : "non-grouped"); if (use_aps) return res_tx_grouped; } } return res; } bool FundTransaction(CWallet& wallet, CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, bilingual_str& error, bool lockUnspents, const std::set<int>& setSubtractFeeFromOutputs, CCoinControl coinControl) { std::vector<CRecipient> vecSend; // Turn the txout set into a CRecipient vector. for (size_t idx = 0; idx < tx.vout.size(); idx++) { const CTxOut& txOut = tx.vout[idx]; CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1}; vecSend.push_back(recipient); } // Acquire the locks to prevent races to the new locked unspents between the // CreateTransaction call and LockCoin calls (when lockUnspents is true). LOCK(wallet.cs_wallet); // Fetch specified UTXOs from the UTXO set to get the scriptPubKeys and values of the outputs being selected // and to match with the given solving_data. Only used for non-wallet outputs. std::map<COutPoint, Coin> coins; for (const CTxIn& txin : tx.vin) { coins[txin.prevout]; // Create empty map entry keyed by prevout. } wallet.chain().findCoins(coins); for (const CTxIn& txin : tx.vin) { // if it's not in the wallet and corresponding UTXO is found than select as external output const auto& outPoint = txin.prevout; if (wallet.mapWallet.find(outPoint.hash) == wallet.mapWallet.end() && !coins[outPoint].out.IsNull()) { coinControl.SelectExternal(outPoint, coins[outPoint].out); } else { coinControl.Select(outPoint); } } auto res = CreateTransaction(wallet, vecSend, nChangePosInOut, coinControl, false); if (!res) { error = res.GetError(); return false; } const auto& txr = res.GetObj(); CTransactionRef tx_new = txr.tx; nFeeRet = txr.fee; nChangePosInOut = txr.change_pos; if (nChangePosInOut != -1) { tx.vout.insert(tx.vout.begin() + nChangePosInOut, tx_new->vout[nChangePosInOut]); } // Copy output sizes from new transaction; they may have had the fee // subtracted from them. for (unsigned int idx = 0; idx < tx.vout.size(); idx++) { tx.vout[idx].nValue = tx_new->vout[idx].nValue; } // Add new txins while keeping original txin scriptSig/order. for (const CTxIn& txin : tx_new->vin) { if (!coinControl.IsSelected(txin.prevout)) { tx.vin.push_back(txin); } if (lockUnspents) { wallet.LockCoin(txin.prevout); } } return true; } } // namespace wallet