// Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "crypter.h" #include "crypto/aes.h" #include "crypto/sha512.h" #include "script/script.h" #include "script/standard.h" #include "util.h" #include #include #include int CCrypter::BytesToKeySHA512AES(const std::vector& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const { // This mimics the behavior of openssl's EVP_BytesToKey with an aes256cbc // cipher and sha512 message digest. Because sha512's output size (64b) is // greater than the aes256 block size (16b) + aes256 key size (32b), // there's no need to process more than once (D_0). if(!count || !key || !iv) return 0; unsigned char buf[CSHA512::OUTPUT_SIZE]; CSHA512 di; di.Write((const unsigned char*)strKeyData.c_str(), strKeyData.size()); if(chSalt.size()) di.Write(&chSalt[0], chSalt.size()); di.Finalize(buf); for(int i = 0; i != count - 1; i++) di.Reset().Write(buf, sizeof(buf)).Finalize(buf); memcpy(key, buf, WALLET_CRYPTO_KEY_SIZE); memcpy(iv, buf + WALLET_CRYPTO_KEY_SIZE, WALLET_CRYPTO_IV_SIZE); memory_cleanse(buf, sizeof(buf)); return WALLET_CRYPTO_KEY_SIZE; } bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod) { if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) return false; int i = 0; if (nDerivationMethod == 0) i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, vchKey.data(), vchIV.data()); if (i != (int)WALLET_CRYPTO_KEY_SIZE) { memory_cleanse(vchKey.data(), vchKey.size()); memory_cleanse(vchIV.data(), vchIV.size()); return false; } fKeySet = true; return true; } bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector& chNewIV) { if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE) return false; memcpy(vchKey.data(), chNewKey.data(), chNewKey.size()); memcpy(vchIV.data(), chNewIV.data(), chNewIV.size()); fKeySet = true; return true; } bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector &vchCiphertext) const { if (!fKeySet) return false; // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCKSIZE bytes vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE); AES256CBCEncrypt enc(vchKey.data(), vchIV.data(), true); size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]); if(nLen < vchPlaintext.size()) return false; vchCiphertext.resize(nLen); return true; } bool CCrypter::Decrypt(const std::vector& vchCiphertext, CKeyingMaterial& vchPlaintext) const { if (!fKeySet) return false; // plaintext will always be equal to or lesser than length of ciphertext int nLen = vchCiphertext.size(); vchPlaintext.resize(nLen); AES256CBCDecrypt dec(vchKey.data(), vchIV.data(), true); nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]); if(nLen == 0) return false; vchPlaintext.resize(nLen); return true; } static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector &vchCiphertext) { CCrypter cKeyCrypter; std::vector chIV(WALLET_CRYPTO_IV_SIZE); memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext); } static bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext) { CCrypter cKeyCrypter; std::vector chIV(WALLET_CRYPTO_IV_SIZE); memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE); if(!cKeyCrypter.SetKey(vMasterKey, chIV)) return false; return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext)); } static bool DecryptKey(const CKeyingMaterial& vMasterKey, const std::vector& vchCryptedSecret, const CPubKey& vchPubKey, CKey& key) { CKeyingMaterial vchSecret; if(!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret)) return false; if (vchSecret.size() != 32) return false; key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed()); return key.VerifyPubKey(vchPubKey); } bool CCryptoKeyStore::SetCrypted() { LOCK(cs_KeyStore); if (fUseCrypto) return true; if (!mapKeys.empty()) return false; fUseCrypto = true; return true; } bool CCryptoKeyStore::Lock() { if (!SetCrypted()) return false; { LOCK(cs_KeyStore); vMasterKey.clear(); } NotifyStatusChanged(this); return true; } bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn) { { LOCK(cs_KeyStore); if (!SetCrypted()) return false; bool keyPass = false; bool keyFail = false; CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin(); for (; mi != mapCryptedKeys.end(); ++mi) { const CPubKey &vchPubKey = (*mi).second.first; const std::vector &vchCryptedSecret = (*mi).second.second; CKey key; if (!DecryptKey(vMasterKeyIn, vchCryptedSecret, vchPubKey, key)) { keyFail = true; break; } keyPass = true; if (fDecryptionThoroughlyChecked) break; } if (keyPass && keyFail) { LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n"); assert(false); } if (keyFail || !keyPass) return false; vMasterKey = vMasterKeyIn; fDecryptionThoroughlyChecked = true; } NotifyStatusChanged(this); return true; } bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey) { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::AddKeyPubKey(key, pubkey); if (IsLocked()) return false; std::vector vchCryptedSecret; CKeyingMaterial vchSecret(key.begin(), key.end()); if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret)) return false; if (!AddCryptedKey(pubkey, vchCryptedSecret)) return false; } return true; } bool CCryptoKeyStore::AddCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { { LOCK(cs_KeyStore); if (!SetCrypted()) return false; mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret); } return true; } bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::GetKey(address, keyOut); CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address); if (mi != mapCryptedKeys.end()) { const CPubKey &vchPubKey = (*mi).second.first; const std::vector &vchCryptedSecret = (*mi).second.second; return DecryptKey(vMasterKey, vchCryptedSecret, vchPubKey, keyOut); } } return false; } bool CCryptoKeyStore::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const { { LOCK(cs_KeyStore); if (!IsCrypted()) return CBasicKeyStore::GetPubKey(address, vchPubKeyOut); CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address); if (mi != mapCryptedKeys.end()) { vchPubKeyOut = (*mi).second.first; return true; } // Check for watch-only pubkeys return CBasicKeyStore::GetPubKey(address, vchPubKeyOut); } } bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn) { { LOCK(cs_KeyStore); if (!mapCryptedKeys.empty() || IsCrypted()) return false; fUseCrypto = true; BOOST_FOREACH(KeyMap::value_type& mKey, mapKeys) { const CKey &key = mKey.second; CPubKey vchPubKey = key.GetPubKey(); CKeyingMaterial vchSecret(key.begin(), key.end()); std::vector vchCryptedSecret; if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret)) return false; if (!AddCryptedKey(vchPubKey, vchCryptedSecret)) return false; } mapKeys.clear(); } return true; }