// Copyright (c) 2017-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include // Descending order comparator struct { bool operator()(const OutputGroup& a, const OutputGroup& b) const { return a.GetSelectionAmount() > b.GetSelectionAmount(); } } descending; /* * This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input * set that can pay for the spending target and does not exceed the spending target by more than the * cost of creating and spending a change output. The algorithm uses a depth-first search on a binary * tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs * are sorted by their effective values and the tree is explored deterministically per the inclusion * branch first. At each node, the algorithm checks whether the selection is within the target range. * While the selection has not reached the target range, more UTXOs are included. When a selection's * value exceeds the target range, the complete subtree deriving from this selection can be omitted. * At that point, the last included UTXO is deselected and the corresponding omission branch explored * instead. The search ends after the complete tree has been searched or after a limited number of tries. * * The search continues to search for better solutions after one solution has been found. The best * solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to * spend the current inputs at the given fee rate minus the long term expected cost to spend the * inputs, plus the amount by which the selection exceeds the spending target: * * waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate) * * The algorithm uses two additional optimizations. A lookahead keeps track of the total value of * the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range * cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us * to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted * predecessor. * * The Branch and Bound algorithm is described in detail in Murch's Master Thesis: * https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf * * @param const std::vector& utxo_pool The set of UTXOs that we are choosing from. * These UTXOs will be sorted in descending order by effective value and the CInputCoins' * values are their effective values. * @param const CAmount& selection_target This is the value that we want to select. It is the lower * bound of the range. * @param const CAmount& cost_of_change This is the cost of creating and spending a change output. * This plus selection_target is the upper bound of the range. * @returns The result of this coin selection algorithm, or std::nullopt */ static const size_t TOTAL_TRIES = 100000; std::optional SelectCoinsBnB(std::vector& utxo_pool, const CAmount& selection_target, const CAmount& cost_of_change) { SelectionResult result(selection_target); CAmount curr_value = 0; std::vector curr_selection; // select the utxo at this index curr_selection.reserve(utxo_pool.size()); // Calculate curr_available_value CAmount curr_available_value = 0; for (const OutputGroup& utxo : utxo_pool) { // Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it assert(utxo.GetSelectionAmount() > 0); curr_available_value += utxo.GetSelectionAmount(); } if (curr_available_value < selection_target) { return std::nullopt; } // Sort the utxo_pool std::sort(utxo_pool.begin(), utxo_pool.end(), descending); CAmount curr_waste = 0; std::vector best_selection; CAmount best_waste = MAX_MONEY; // Depth First search loop for choosing the UTXOs for (size_t i = 0; i < TOTAL_TRIES; ++i) { // Conditions for starting a backtrack bool backtrack = false; if (curr_value + curr_available_value < selection_target || // Cannot possibly reach target with the amount remaining in the curr_available_value. curr_value > selection_target + cost_of_change || // Selected value is out of range, go back and try other branch (curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing backtrack = true; } else if (curr_value >= selection_target) { // Selected value is within range curr_waste += (curr_value - selection_target); // This is the excess value which is added to the waste for the below comparison // Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee. // However we are not going to explore that because this optimization for the waste is only done when we have hit our target // value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to // explore any more UTXOs to avoid burning money like that. if (curr_waste <= best_waste) { best_selection = curr_selection; best_selection.resize(utxo_pool.size()); best_waste = curr_waste; if (best_waste == 0) { break; } } curr_waste -= (curr_value - selection_target); // Remove the excess value as we will be selecting different coins now backtrack = true; } // Backtracking, moving backwards if (backtrack) { // Walk backwards to find the last included UTXO that still needs to have its omission branch traversed. while (!curr_selection.empty() && !curr_selection.back()) { curr_selection.pop_back(); curr_available_value += utxo_pool.at(curr_selection.size()).GetSelectionAmount(); } if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched break; } // Output was included on previous iterations, try excluding now. curr_selection.back() = false; OutputGroup& utxo = utxo_pool.at(curr_selection.size() - 1); curr_value -= utxo.GetSelectionAmount(); curr_waste -= utxo.fee - utxo.long_term_fee; } else { // Moving forwards, continuing down this branch OutputGroup& utxo = utxo_pool.at(curr_selection.size()); // Remove this utxo from the curr_available_value utxo amount curr_available_value -= utxo.GetSelectionAmount(); // Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to // long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same. if (!curr_selection.empty() && !curr_selection.back() && utxo.GetSelectionAmount() == utxo_pool.at(curr_selection.size() - 1).GetSelectionAmount() && utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) { curr_selection.push_back(false); } else { // Inclusion branch first (Largest First Exploration) curr_selection.push_back(true); curr_value += utxo.GetSelectionAmount(); curr_waste += utxo.fee - utxo.long_term_fee; } } } // Check for solution if (best_selection.empty()) { return std::nullopt; } // Set output set for (size_t i = 0; i < best_selection.size(); ++i) { if (best_selection.at(i)) { result.AddInput(utxo_pool.at(i)); } } return result; } std::optional SelectCoinsSRD(const std::vector& utxo_pool, CAmount target_value) { SelectionResult result(target_value); std::vector indexes; indexes.resize(utxo_pool.size()); std::iota(indexes.begin(), indexes.end(), 0); Shuffle(indexes.begin(), indexes.end(), FastRandomContext()); CAmount selected_eff_value = 0; for (const size_t i : indexes) { const OutputGroup& group = utxo_pool.at(i); Assume(group.GetSelectionAmount() > 0); selected_eff_value += group.GetSelectionAmount(); result.AddInput(group); if (selected_eff_value >= target_value) { return result; } } return std::nullopt; } static void ApproximateBestSubset(const std::vector& groups, const CAmount& nTotalLower, const CAmount& nTargetValue, std::vector& vfBest, CAmount& nBest, int iterations = 1000) { std::vector vfIncluded; vfBest.assign(groups.size(), true); nBest = nTotalLower; FastRandomContext insecure_rand; for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++) { vfIncluded.assign(groups.size(), false); CAmount nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (unsigned int i = 0; i < groups.size(); i++) { //The solver here uses a randomized algorithm, //the randomness serves no real security purpose but is just //needed to prevent degenerate behavior and it is important //that the rng is fast. We do not use a constant random sequence, //because there may be some privacy improvement by making //the selection random. if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i]) { nTotal += groups[i].GetSelectionAmount(); vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= groups[i].GetSelectionAmount(); vfIncluded[i] = false; } } } } } } std::optional KnapsackSolver(std::vector& groups, const CAmount& nTargetValue) { SelectionResult result(nTargetValue); // List of values less than target std::optional lowest_larger; std::vector applicable_groups; CAmount nTotalLower = 0; Shuffle(groups.begin(), groups.end(), FastRandomContext()); for (const OutputGroup& group : groups) { if (group.GetSelectionAmount() == nTargetValue) { result.AddInput(group); return result; } else if (group.GetSelectionAmount() < nTargetValue + MIN_CHANGE) { applicable_groups.push_back(group); nTotalLower += group.GetSelectionAmount(); } else if (!lowest_larger || group.GetSelectionAmount() < lowest_larger->GetSelectionAmount()) { lowest_larger = group; } } if (nTotalLower == nTargetValue) { for (const auto& group : applicable_groups) { result.AddInput(group); } return result; } if (nTotalLower < nTargetValue) { if (!lowest_larger) return std::nullopt; result.AddInput(*lowest_larger); return result; } // Solve subset sum by stochastic approximation std::sort(applicable_groups.begin(), applicable_groups.end(), descending); std::vector vfBest; CAmount nBest; ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue, vfBest, nBest); if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) { ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest); } // If we have a bigger coin and (either the stochastic approximation didn't find a good solution, // or the next bigger coin is closer), return the bigger coin if (lowest_larger && ((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || lowest_larger->GetSelectionAmount() <= nBest)) { result.AddInput(*lowest_larger); } else { for (unsigned int i = 0; i < applicable_groups.size(); i++) { if (vfBest[i]) { result.AddInput(applicable_groups[i]); } } if (LogAcceptCategory(BCLog::SELECTCOINS)) { std::string log_message{"Coin selection best subset: "}; for (unsigned int i = 0; i < applicable_groups.size(); i++) { if (vfBest[i]) { log_message += strprintf("%s ", FormatMoney(applicable_groups[i].m_value)); } } LogPrint(BCLog::SELECTCOINS, "%stotal %s\n", log_message, FormatMoney(nBest)); } } return result; } /****************************************************************************** OutputGroup ******************************************************************************/ void OutputGroup::Insert(const CInputCoin& output, int depth, bool from_me, size_t ancestors, size_t descendants, bool positive_only) { // Compute the effective value first const CAmount coin_fee = output.m_input_bytes < 0 ? 0 : m_effective_feerate.GetFee(output.m_input_bytes); const CAmount ev = output.txout.nValue - coin_fee; // Filter for positive only here before adding the coin if (positive_only && ev <= 0) return; m_outputs.push_back(output); CInputCoin& coin = m_outputs.back(); coin.m_fee = coin_fee; fee += coin.m_fee; coin.m_long_term_fee = coin.m_input_bytes < 0 ? 0 : m_long_term_feerate.GetFee(coin.m_input_bytes); long_term_fee += coin.m_long_term_fee; coin.effective_value = ev; effective_value += coin.effective_value; m_from_me &= from_me; m_value += output.txout.nValue; m_depth = std::min(m_depth, depth); // ancestors here express the number of ancestors the new coin will end up having, which is // the sum, rather than the max; this will overestimate in the cases where multiple inputs // have common ancestors m_ancestors += ancestors; // descendants is the count as seen from the top ancestor, not the descendants as seen from the // coin itself; thus, this value is counted as the max, not the sum m_descendants = std::max(m_descendants, descendants); } bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const { return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs) && m_ancestors <= eligibility_filter.max_ancestors && m_descendants <= eligibility_filter.max_descendants; } CAmount OutputGroup::GetSelectionAmount() const { return m_subtract_fee_outputs ? m_value : effective_value; } CAmount GetSelectionWaste(const std::set& inputs, CAmount change_cost, CAmount target, bool use_effective_value) { // This function should not be called with empty inputs as that would mean the selection failed assert(!inputs.empty()); // Always consider the cost of spending an input now vs in the future. CAmount waste = 0; CAmount selected_effective_value = 0; for (const CInputCoin& coin : inputs) { waste += coin.m_fee - coin.m_long_term_fee; selected_effective_value += use_effective_value ? coin.effective_value : coin.txout.nValue; } if (change_cost) { // Consider the cost of making change and spending it in the future // If we aren't making change, the caller should've set change_cost to 0 assert(change_cost > 0); waste += change_cost; } else { // When we are not making change (change_cost == 0), consider the excess we are throwing away to fees assert(selected_effective_value >= target); waste += selected_effective_value - target; } return waste; } void SelectionResult::ComputeAndSetWaste(CAmount change_cost) { m_waste = GetSelectionWaste(m_selected_inputs, change_cost, m_target, m_use_effective); } CAmount SelectionResult::GetWaste() const { Assume(m_waste != std::nullopt); return *m_waste; } CAmount SelectionResult::GetSelectedValue() const { return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin.txout.nValue; }); } void SelectionResult::Clear() { m_selected_inputs.clear(); m_waste.reset(); } void SelectionResult::AddInput(const OutputGroup& group) { util::insert(m_selected_inputs, group.m_outputs); m_use_effective = !group.m_subtract_fee_outputs; } const std::set& SelectionResult::GetInputSet() const { return m_selected_inputs; } std::vector SelectionResult::GetShuffledInputVector() const { std::vector coins(m_selected_inputs.begin(), m_selected_inputs.end()); Shuffle(coins.begin(), coins.end(), FastRandomContext()); return coins; } bool SelectionResult::operator<(SelectionResult other) const { Assume(m_waste != std::nullopt); Assume(other.m_waste != std::nullopt); // As this operator is only used in std::min_element, we want the result that has more inputs when waste are equal. return *m_waste < *other.m_waste || (*m_waste == *other.m_waste && m_selected_inputs.size() > other.m_selected_inputs.size()); }