// Copyright (c) 2019-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr uint32_t INVALID = 0xFFFFFFFF; uint32_t DecodeBits(std::vector::const_iterator& bitpos, const std::vector::const_iterator& endpos, uint8_t minval, const std::vector &bit_sizes) { uint32_t val = minval; bool bit; for (std::vector::const_iterator bit_sizes_it = bit_sizes.begin(); bit_sizes_it != bit_sizes.end(); ++bit_sizes_it) { if (bit_sizes_it + 1 != bit_sizes.end()) { if (bitpos == endpos) break; bit = *bitpos; bitpos++; } else { bit = 0; } if (bit) { val += (1 << *bit_sizes_it); } else { for (int b = 0; b < *bit_sizes_it; b++) { if (bitpos == endpos) return INVALID; // Reached EOF in mantissa bit = *bitpos; bitpos++; val += bit << (*bit_sizes_it - 1 - b); } return val; } } return INVALID; // Reached EOF in exponent } enum class Instruction : uint32_t { RETURN = 0, JUMP = 1, MATCH = 2, DEFAULT = 3, }; const std::vector TYPE_BIT_SIZES{0, 0, 1}; Instruction DecodeType(std::vector::const_iterator& bitpos, const std::vector::const_iterator& endpos) { return Instruction(DecodeBits(bitpos, endpos, 0, TYPE_BIT_SIZES)); } const std::vector ASN_BIT_SIZES{15, 16, 17, 18, 19, 20, 21, 22, 23, 24}; uint32_t DecodeASN(std::vector::const_iterator& bitpos, const std::vector::const_iterator& endpos) { return DecodeBits(bitpos, endpos, 1, ASN_BIT_SIZES); } const std::vector MATCH_BIT_SIZES{1, 2, 3, 4, 5, 6, 7, 8}; uint32_t DecodeMatch(std::vector::const_iterator& bitpos, const std::vector::const_iterator& endpos) { return DecodeBits(bitpos, endpos, 2, MATCH_BIT_SIZES); } const std::vector JUMP_BIT_SIZES{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}; uint32_t DecodeJump(std::vector::const_iterator& bitpos, const std::vector::const_iterator& endpos) { return DecodeBits(bitpos, endpos, 17, JUMP_BIT_SIZES); } } uint32_t Interpret(const std::vector &asmap, const std::vector &ip) { std::vector::const_iterator pos = asmap.begin(); const std::vector::const_iterator endpos = asmap.end(); uint8_t bits = ip.size(); uint32_t default_asn = 0; uint32_t jump, match, matchlen; Instruction opcode; while (pos != endpos) { opcode = DecodeType(pos, endpos); if (opcode == Instruction::RETURN) { default_asn = DecodeASN(pos, endpos); if (default_asn == INVALID) break; // ASN straddles EOF return default_asn; } else if (opcode == Instruction::JUMP) { jump = DecodeJump(pos, endpos); if (jump == INVALID) break; // Jump offset straddles EOF if (bits == 0) break; // No input bits left if (int64_t{jump} >= int64_t{endpos - pos}) break; // Jumping past EOF if (ip[ip.size() - bits]) { pos += jump; } bits--; } else if (opcode == Instruction::MATCH) { match = DecodeMatch(pos, endpos); if (match == INVALID) break; // Match bits straddle EOF matchlen = CountBits(match) - 1; if (bits < matchlen) break; // Not enough input bits for (uint32_t bit = 0; bit < matchlen; bit++) { if ((ip[ip.size() - bits]) != ((match >> (matchlen - 1 - bit)) & 1)) { return default_asn; } bits--; } } else if (opcode == Instruction::DEFAULT) { default_asn = DecodeASN(pos, endpos); if (default_asn == INVALID) break; // ASN straddles EOF } else { break; // Instruction straddles EOF } } assert(false); // Reached EOF without RETURN, or aborted (see any of the breaks above) - should have been caught by SanityCheckASMap below return 0; // 0 is not a valid ASN } bool SanityCheckASMap(const std::vector& asmap, int bits) { const std::vector::const_iterator begin = asmap.begin(), endpos = asmap.end(); std::vector::const_iterator pos = begin; std::vector> jumps; // All future positions we may jump to (bit offset in asmap -> bits to consume left) jumps.reserve(bits); Instruction prevopcode = Instruction::JUMP; bool had_incomplete_match = false; while (pos != endpos) { uint32_t offset = pos - begin; if (!jumps.empty() && offset >= jumps.back().first) return false; // There was a jump into the middle of the previous instruction Instruction opcode = DecodeType(pos, endpos); if (opcode == Instruction::RETURN) { if (prevopcode == Instruction::DEFAULT) return false; // There should not be any RETURN immediately after a DEFAULT (could be combined into just RETURN) uint32_t asn = DecodeASN(pos, endpos); if (asn == INVALID) return false; // ASN straddles EOF if (jumps.empty()) { // Nothing to execute anymore if (endpos - pos > 7) return false; // Excessive padding while (pos != endpos) { if (*pos) return false; // Nonzero padding bit ++pos; } return true; // Sanely reached EOF } else { // Continue by pretending we jumped to the next instruction offset = pos - begin; if (offset != jumps.back().first) return false; // Unreachable code bits = jumps.back().second; // Restore the number of bits we would have had left after this jump jumps.pop_back(); prevopcode = Instruction::JUMP; } } else if (opcode == Instruction::JUMP) { uint32_t jump = DecodeJump(pos, endpos); if (jump == INVALID) return false; // Jump offset straddles EOF if (int64_t{jump} > int64_t{endpos - pos}) return false; // Jump out of range if (bits == 0) return false; // Consuming bits past the end of the input --bits; uint32_t jump_offset = pos - begin + jump; if (!jumps.empty() && jump_offset >= jumps.back().first) return false; // Intersecting jumps jumps.emplace_back(jump_offset, bits); prevopcode = Instruction::JUMP; } else if (opcode == Instruction::MATCH) { uint32_t match = DecodeMatch(pos, endpos); if (match == INVALID) return false; // Match bits straddle EOF int matchlen = CountBits(match) - 1; if (prevopcode != Instruction::MATCH) had_incomplete_match = false; if (matchlen < 8 && had_incomplete_match) return false; // Within a sequence of matches only at most one should be incomplete had_incomplete_match = (matchlen < 8); if (bits < matchlen) return false; // Consuming bits past the end of the input bits -= matchlen; prevopcode = Instruction::MATCH; } else if (opcode == Instruction::DEFAULT) { if (prevopcode == Instruction::DEFAULT) return false; // There should not be two successive DEFAULTs (they could be combined into one) uint32_t asn = DecodeASN(pos, endpos); if (asn == INVALID) return false; // ASN straddles EOF prevopcode = Instruction::DEFAULT; } else { return false; // Instruction straddles EOF } } return false; // Reached EOF without RETURN instruction } std::vector DecodeAsmap(fs::path path) { std::vector bits; FILE *filestr = fsbridge::fopen(path, "rb"); CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); if (file.IsNull()) { LogPrintf("Failed to open asmap file from disk\n"); return bits; } fseek(filestr, 0, SEEK_END); int length = ftell(filestr); LogPrintf("Opened asmap file %s (%d bytes) from disk\n", fs::quoted(fs::PathToString(path)), length); fseek(filestr, 0, SEEK_SET); uint8_t cur_byte; for (int i = 0; i < length; ++i) { file >> cur_byte; for (int bit = 0; bit < 8; ++bit) { bits.push_back((cur_byte >> bit) & 1); } } if (!SanityCheckASMap(bits, 128)) { LogPrintf("Sanity check of asmap file %s failed\n", fs::quoted(fs::PathToString(path))); return {}; } return bits; }