// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include /** Expiration time for orphan transactions in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60; /** Minimum time between orphan transactions expire time checks in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60; bool TxOrphanage::AddTx(const CTransactionRef& tx, NodeId peer) { LOCK(m_mutex); const Txid& hash = tx->GetHash(); const Wtxid& wtxid = tx->GetWitnessHash(); if (m_orphans.count(wtxid)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 100 orphans, each of which is at most 100,000 bytes big is // at most 10 megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = GetTransactionWeight(*tx); if (sz > MAX_STANDARD_TX_WEIGHT) { LogPrint(BCLog::TXPACKAGES, "ignoring large orphan tx (size: %u, txid: %s, wtxid: %s)\n", sz, hash.ToString(), wtxid.ToString()); return false; } auto ret = m_orphans.emplace(wtxid, OrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME, m_orphan_list.size()}); assert(ret.second); m_orphan_list.push_back(ret.first); for (const CTxIn& txin : tx->vin) { m_outpoint_to_orphan_it[txin.prevout].insert(ret.first); } LogPrint(BCLog::TXPACKAGES, "stored orphan tx %s (wtxid=%s), weight: %u (mapsz %u outsz %u)\n", hash.ToString(), wtxid.ToString(), sz, m_orphans.size(), m_outpoint_to_orphan_it.size()); return true; } int TxOrphanage::EraseTx(const Wtxid& wtxid) { LOCK(m_mutex); return EraseTxNoLock(wtxid); } int TxOrphanage::EraseTxNoLock(const Wtxid& wtxid) { AssertLockHeld(m_mutex); std::map::iterator it = m_orphans.find(wtxid); if (it == m_orphans.end()) return 0; for (const CTxIn& txin : it->second.tx->vin) { auto itPrev = m_outpoint_to_orphan_it.find(txin.prevout); if (itPrev == m_outpoint_to_orphan_it.end()) continue; itPrev->second.erase(it); if (itPrev->second.empty()) m_outpoint_to_orphan_it.erase(itPrev); } size_t old_pos = it->second.list_pos; assert(m_orphan_list[old_pos] == it); if (old_pos + 1 != m_orphan_list.size()) { // Unless we're deleting the last entry in m_orphan_list, move the last // entry to the position we're deleting. auto it_last = m_orphan_list.back(); m_orphan_list[old_pos] = it_last; it_last->second.list_pos = old_pos; } const auto& txid = it->second.tx->GetHash(); // Time spent in orphanage = difference between current and entry time. // Entry time is equal to ORPHAN_TX_EXPIRE_TIME earlier than entry's expiry. LogPrint(BCLog::TXPACKAGES, " removed orphan tx %s (wtxid=%s) after %ds\n", txid.ToString(), wtxid.ToString(), GetTime() + ORPHAN_TX_EXPIRE_TIME - it->second.nTimeExpire); m_orphan_list.pop_back(); m_orphans.erase(it); return 1; } void TxOrphanage::EraseForPeer(NodeId peer) { LOCK(m_mutex); m_peer_work_set.erase(peer); int nErased = 0; std::map::iterator iter = m_orphans.begin(); while (iter != m_orphans.end()) { // increment to avoid iterator becoming invalid after erasure const auto& [wtxid, orphan] = *iter++; if (orphan.fromPeer == peer) { nErased += EraseTxNoLock(wtxid); } } if (nErased > 0) LogPrint(BCLog::TXPACKAGES, "Erased %d orphan transaction(s) from peer=%d\n", nErased, peer); } void TxOrphanage::LimitOrphans(unsigned int max_orphans, FastRandomContext& rng) { LOCK(m_mutex); unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; std::map::iterator iter = m_orphans.begin(); while (iter != m_orphans.end()) { std::map::iterator maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseTxNoLock(maybeErase->second.tx->GetWitnessHash()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) LogPrint(BCLog::TXPACKAGES, "Erased %d orphan tx due to expiration\n", nErased); } while (m_orphans.size() > max_orphans) { // Evict a random orphan: size_t randompos = rng.randrange(m_orphan_list.size()); EraseTxNoLock(m_orphan_list[randompos]->second.tx->GetWitnessHash()); ++nEvicted; } if (nEvicted > 0) LogPrint(BCLog::TXPACKAGES, "orphanage overflow, removed %u tx\n", nEvicted); } void TxOrphanage::AddChildrenToWorkSet(const CTransaction& tx) { LOCK(m_mutex); for (unsigned int i = 0; i < tx.vout.size(); i++) { const auto it_by_prev = m_outpoint_to_orphan_it.find(COutPoint(tx.GetHash(), i)); if (it_by_prev != m_outpoint_to_orphan_it.end()) { for (const auto& elem : it_by_prev->second) { // Get this source peer's work set, emplacing an empty set if it didn't exist // (note: if this peer wasn't still connected, we would have removed the orphan tx already) std::set& orphan_work_set = m_peer_work_set.try_emplace(elem->second.fromPeer).first->second; // Add this tx to the work set orphan_work_set.insert(elem->first); LogPrint(BCLog::TXPACKAGES, "added %s (wtxid=%s) to peer %d workset\n", tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), elem->second.fromPeer); } } } } bool TxOrphanage::HaveTx(const Wtxid& wtxid) const { LOCK(m_mutex); return m_orphans.count(wtxid); } CTransactionRef TxOrphanage::GetTxToReconsider(NodeId peer) { LOCK(m_mutex); auto work_set_it = m_peer_work_set.find(peer); if (work_set_it != m_peer_work_set.end()) { auto& work_set = work_set_it->second; while (!work_set.empty()) { Wtxid wtxid = *work_set.begin(); work_set.erase(work_set.begin()); const auto orphan_it = m_orphans.find(wtxid); if (orphan_it != m_orphans.end()) { return orphan_it->second.tx; } } } return nullptr; } bool TxOrphanage::HaveTxToReconsider(NodeId peer) { LOCK(m_mutex); auto work_set_it = m_peer_work_set.find(peer); if (work_set_it != m_peer_work_set.end()) { auto& work_set = work_set_it->second; return !work_set.empty(); } return false; } void TxOrphanage::EraseForBlock(const CBlock& block) { LOCK(m_mutex); std::vector vOrphanErase; for (const CTransactionRef& ptx : block.vtx) { const CTransaction& tx = *ptx; // Which orphan pool entries must we evict? for (const auto& txin : tx.vin) { auto itByPrev = m_outpoint_to_orphan_it.find(txin.prevout); if (itByPrev == m_outpoint_to_orphan_it.end()) continue; for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction& orphanTx = *(*mi)->second.tx; vOrphanErase.push_back(orphanTx.GetWitnessHash()); } } } // Erase orphan transactions included or precluded by this block if (vOrphanErase.size()) { int nErased = 0; for (const auto& orphanHash : vOrphanErase) { nErased += EraseTxNoLock(orphanHash); } LogPrint(BCLog::TXPACKAGES, "Erased %d orphan transaction(s) included or conflicted by block\n", nErased); } } std::vector TxOrphanage::GetChildrenFromSamePeer(const CTransactionRef& parent, NodeId nodeid) const { LOCK(m_mutex); // First construct a vector of iterators to ensure we do not return duplicates of the same tx // and so we can sort by nTimeExpire. std::vector iters; // For each output, get all entries spending this prevout, filtering for ones from the specified peer. for (unsigned int i = 0; i < parent->vout.size(); i++) { const auto it_by_prev = m_outpoint_to_orphan_it.find(COutPoint(parent->GetHash(), i)); if (it_by_prev != m_outpoint_to_orphan_it.end()) { for (const auto& elem : it_by_prev->second) { if (elem->second.fromPeer == nodeid) { iters.emplace_back(elem); } } } } // Sort by address so that duplicates can be deleted. At the same time, sort so that more recent // orphans (which expire later) come first. Break ties based on address, as nTimeExpire is // quantified in seconds and it is possible for orphans to have the same expiry. std::sort(iters.begin(), iters.end(), [](const auto& lhs, const auto& rhs) { if (lhs->second.nTimeExpire == rhs->second.nTimeExpire) { return &(*lhs) < &(*rhs); } else { return lhs->second.nTimeExpire > rhs->second.nTimeExpire; } }); // Erase duplicates iters.erase(std::unique(iters.begin(), iters.end()), iters.end()); // Convert to a vector of CTransactionRef std::vector children_found; children_found.reserve(iters.size()); for (const auto& child_iter : iters) { children_found.emplace_back(child_iter->second.tx); } return children_found; } std::vector> TxOrphanage::GetChildrenFromDifferentPeer(const CTransactionRef& parent, NodeId nodeid) const { LOCK(m_mutex); // First construct vector of iterators to ensure we do not return duplicates of the same tx. std::vector iters; // For each output, get all entries spending this prevout, filtering for ones not from the specified peer. for (unsigned int i = 0; i < parent->vout.size(); i++) { const auto it_by_prev = m_outpoint_to_orphan_it.find(COutPoint(parent->GetHash(), i)); if (it_by_prev != m_outpoint_to_orphan_it.end()) { for (const auto& elem : it_by_prev->second) { if (elem->second.fromPeer != nodeid) { iters.emplace_back(elem); } } } } // Erase duplicates std::sort(iters.begin(), iters.end(), IteratorComparator()); iters.erase(std::unique(iters.begin(), iters.end()), iters.end()); // Convert iterators to pair std::vector> children_found; children_found.reserve(iters.size()); for (const auto& child_iter : iters) { children_found.emplace_back(child_iter->second.tx, child_iter->second.fromPeer); } return children_found; }