/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include #include #include "secp256k1.c" #include "testrand_impl.h" #ifdef ENABLE_OPENSSL_TESTS #include "openssl/bn.h" #include "openssl/ec.h" #include "openssl/ecdsa.h" #include "openssl/obj_mac.h" #endif static int count = 64; void random_field_element_test(secp256k1_fe_t *fe) { do { unsigned char b32[32]; secp256k1_rand256_test(b32); if (secp256k1_fe_set_b32(fe, b32)) { break; } } while(1); } void random_field_element_magnitude(secp256k1_fe_t *fe) { secp256k1_fe_normalize(fe); int n = secp256k1_rand32() % 4; for (int i = 0; i < n; i++) { secp256k1_fe_negate(fe, fe, 1 + 2*i); secp256k1_fe_negate(fe, fe, 2 + 2*i); } } void random_group_element_test(secp256k1_ge_t *ge) { secp256k1_fe_t fe; do { random_field_element_test(&fe); if (secp256k1_ge_set_xo(ge, &fe, secp256k1_rand32() & 1)) break; } while(1); } void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) { do { random_field_element_test(&gej->z); if (!secp256k1_fe_is_zero(&gej->z)) { break; } } while(1); secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z); secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z); secp256k1_fe_mul(&gej->x, &ge->x, &z2); secp256k1_fe_mul(&gej->y, &ge->y, &z3); gej->infinity = ge->infinity; } void random_scalar_order_test(secp256k1_scalar_t *num) { do { unsigned char b32[32]; secp256k1_rand256_test(b32); int overflow = 0; secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; break; } while(1); } void random_scalar_order(secp256k1_scalar_t *num) { do { unsigned char b32[32]; secp256k1_rand256(b32); int overflow = 0; secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; break; } while(1); } /***** NUM TESTS *****/ #ifndef USE_NUM_NONE void random_num_negate(secp256k1_num_t *num) { if (secp256k1_rand32() & 1) secp256k1_num_negate(num); } void random_num_order_test(secp256k1_num_t *num) { secp256k1_scalar_t sc; random_scalar_order_test(&sc); secp256k1_scalar_get_num(num, &sc); } void random_num_order(secp256k1_num_t *num) { secp256k1_scalar_t sc; random_scalar_order(&sc); secp256k1_scalar_get_num(num, &sc); } void test_num_negate(void) { secp256k1_num_t n1; secp256k1_num_t n2; random_num_order_test(&n1); /* n1 = R */ random_num_negate(&n1); secp256k1_num_copy(&n2, &n1); /* n2 = R */ secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */ CHECK(secp256k1_num_is_zero(&n1)); secp256k1_num_copy(&n1, &n2); /* n1 = R */ secp256k1_num_negate(&n1); /* n1 = -R */ CHECK(!secp256k1_num_is_zero(&n1)); secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */ CHECK(secp256k1_num_is_zero(&n1)); secp256k1_num_copy(&n1, &n2); /* n1 = R */ secp256k1_num_negate(&n1); /* n1 = -R */ CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); secp256k1_num_negate(&n1); /* n1 = R */ CHECK(secp256k1_num_eq(&n1, &n2)); } void test_num_add_sub(void) { int r = secp256k1_rand32(); secp256k1_num_t n1; secp256k1_num_t n2; random_num_order_test(&n1); /* n1 = R1 */ if (r & 1) { random_num_negate(&n1); } random_num_order_test(&n2); /* n2 = R2 */ if (r & 2) { random_num_negate(&n2); } secp256k1_num_t n1p2, n2p1, n1m2, n2m1; secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */ secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */ CHECK(secp256k1_num_eq(&n1p2, &n2p1)); CHECK(!secp256k1_num_eq(&n1p2, &n1m2)); secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */ CHECK(secp256k1_num_eq(&n2m1, &n1m2)); CHECK(!secp256k1_num_eq(&n2m1, &n1)); secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */ CHECK(secp256k1_num_eq(&n2m1, &n1)); CHECK(!secp256k1_num_eq(&n2p1, &n1)); secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */ CHECK(secp256k1_num_eq(&n2p1, &n1)); } void run_num_smalltests(void) { for (int i=0; i<100*count; i++) { test_num_negate(); test_num_add_sub(); } } #endif /***** SCALAR TESTS *****/ void scalar_test(void) { unsigned char c[32]; /* Set 's' to a random scalar, with value 'snum'. */ secp256k1_scalar_t s; random_scalar_order_test(&s); /* Set 's1' to a random scalar, with value 's1num'. */ secp256k1_scalar_t s1; random_scalar_order_test(&s1); /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */ secp256k1_scalar_t s2; random_scalar_order_test(&s2); secp256k1_scalar_get_b32(c, &s2); #ifndef USE_NUM_NONE secp256k1_num_t snum, s1num, s2num; secp256k1_scalar_get_num(&snum, &s); secp256k1_scalar_get_num(&s1num, &s1); secp256k1_scalar_get_num(&s2num, &s2); secp256k1_num_t order; secp256k1_scalar_order_get_num(&order); secp256k1_num_t half_order = order; secp256k1_num_shift(&half_order, 1); #endif { /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; secp256k1_scalar_set_int(&n, 0); for (int i = 0; i < 256; i += 4) { secp256k1_scalar_t t; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4)); for (int j = 0; j < 4; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); } CHECK(secp256k1_scalar_eq(&n, &s)); } { /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; secp256k1_scalar_set_int(&n, 0); int i = 0; while (i < 256) { int now = (secp256k1_rand32() % 15) + 1; if (now + i > 256) { now = 256 - i; } secp256k1_scalar_t t; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now)); for (int j = 0; j < now; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); i += now; } CHECK(secp256k1_scalar_eq(&n, &s)); } #ifndef USE_NUM_NONE { /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ secp256k1_num_t rnum; secp256k1_num_add(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); secp256k1_scalar_t r; secp256k1_scalar_add(&r, &s, &s2); secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); } { /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */ secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); secp256k1_scalar_t r; secp256k1_scalar_mul(&r, &s, &s2); secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); /* The result can only be zero if at least one of the factors was zero. */ CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2))); /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */ CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2))); CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s))); } { /* Check that comparison with zero matches comparison with zero on the number. */ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); /* Check that comparison with the half order is equal to testing for high scalar. */ CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0)); secp256k1_scalar_t neg; secp256k1_scalar_negate(&neg, &s); secp256k1_num_t negnum; secp256k1_num_sub(&negnum, &order, &snum); secp256k1_num_mod(&negnum, &order); /* Check that comparison with the half order is equal to testing for high scalar after negation. */ CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0)); /* Negating should change the high property, unless the value was already zero. */ CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s)); secp256k1_num_t negnum2; secp256k1_scalar_get_num(&negnum2, &neg); /* Negating a scalar should be equal to (order - n) mod order on the number. */ CHECK(secp256k1_num_eq(&negnum, &negnum2)); secp256k1_scalar_add(&neg, &neg, &s); /* Adding a number to its negation should result in zero. */ CHECK(secp256k1_scalar_is_zero(&neg)); secp256k1_scalar_negate(&neg, &neg); /* Negating zero should still result in zero. */ CHECK(secp256k1_scalar_is_zero(&neg)); } { /* Test secp256k1_scalar_mul_shift_var. */ secp256k1_scalar_t r; unsigned int shift = 256 + (secp256k1_rand32() % 257); secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &s1num, &s2num); secp256k1_num_shift(&rnum, shift - 1); secp256k1_num_t one; unsigned char cone[1] = {0x01}; secp256k1_num_set_bin(&one, cone, 1); secp256k1_num_add(&rnum, &rnum, &one); secp256k1_num_shift(&rnum, 1); secp256k1_num_t rnum2; secp256k1_scalar_get_num(&rnum2, &r); CHECK(secp256k1_num_eq(&rnum, &rnum2)); } #endif { /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ if (!secp256k1_scalar_is_zero(&s)) { secp256k1_scalar_t inv; secp256k1_scalar_inverse(&inv, &s); #ifndef USE_NUM_NONE secp256k1_num_t invnum; secp256k1_num_mod_inverse(&invnum, &snum, &order); secp256k1_num_t invnum2; secp256k1_scalar_get_num(&invnum2, &inv); CHECK(secp256k1_num_eq(&invnum, &invnum2)); #endif secp256k1_scalar_mul(&inv, &inv, &s); /* Multiplying a scalar with its inverse must result in one. */ CHECK(secp256k1_scalar_is_one(&inv)); secp256k1_scalar_inverse(&inv, &inv); /* Inverting one must result in one. */ CHECK(secp256k1_scalar_is_one(&inv)); } } { /* Test commutativity of add. */ secp256k1_scalar_t r1, r2; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_add(&r2, &s2, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { /* Test add_bit. */ int bit = secp256k1_rand32() % 256; secp256k1_scalar_t b; secp256k1_scalar_set_int(&b, 1); CHECK(secp256k1_scalar_is_one(&b)); for (int i = 0; i < bit; i++) { secp256k1_scalar_add(&b, &b, &b); } secp256k1_scalar_t r1 = s1, r2 = s1; if (!secp256k1_scalar_add(&r1, &r1, &b)) { /* No overflow happened. */ secp256k1_scalar_add_bit(&r2, bit); CHECK(secp256k1_scalar_eq(&r1, &r2)); } } { /* Test commutativity of mul. */ secp256k1_scalar_t r1, r2; secp256k1_scalar_mul(&r1, &s1, &s2); secp256k1_scalar_mul(&r2, &s2, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { /* Test associativity of add. */ secp256k1_scalar_t r1, r2; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_add(&r1, &r1, &s); secp256k1_scalar_add(&r2, &s2, &s); secp256k1_scalar_add(&r2, &s1, &r2); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { /* Test associativity of mul. */ secp256k1_scalar_t r1, r2; secp256k1_scalar_mul(&r1, &s1, &s2); secp256k1_scalar_mul(&r1, &r1, &s); secp256k1_scalar_mul(&r2, &s2, &s); secp256k1_scalar_mul(&r2, &s1, &r2); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { /* Test distributitivity of mul over add. */ secp256k1_scalar_t r1, r2, t; secp256k1_scalar_add(&r1, &s1, &s2); secp256k1_scalar_mul(&r1, &r1, &s); secp256k1_scalar_mul(&r2, &s1, &s); secp256k1_scalar_mul(&t, &s2, &s); secp256k1_scalar_add(&r2, &r2, &t); CHECK(secp256k1_scalar_eq(&r1, &r2)); } { /* Test square. */ secp256k1_scalar_t r1, r2; secp256k1_scalar_sqr(&r1, &s1); secp256k1_scalar_mul(&r2, &s1, &s1); CHECK(secp256k1_scalar_eq(&r1, &r2)); } } void run_scalar_tests(void) { for (int i = 0; i < 128 * count; i++) { scalar_test(); } { /* (-1)+1 should be zero. */ secp256k1_scalar_t s, o; secp256k1_scalar_set_int(&s, 1); secp256k1_scalar_negate(&o, &s); secp256k1_scalar_add(&o, &o, &s); CHECK(secp256k1_scalar_is_zero(&o)); } #ifndef USE_NUM_NONE { /* A scalar with value of the curve order should be 0. */ secp256k1_num_t order; secp256k1_scalar_order_get_num(&order); unsigned char bin[32]; secp256k1_num_get_bin(bin, 32, &order); secp256k1_scalar_t zero; int overflow = 0; secp256k1_scalar_set_b32(&zero, bin, &overflow); CHECK(overflow == 1); CHECK(secp256k1_scalar_is_zero(&zero)); } #endif } /***** FIELD TESTS *****/ void random_fe(secp256k1_fe_t *x) { unsigned char bin[32]; do { secp256k1_rand256(bin); if (secp256k1_fe_set_b32(x, bin)) { return; } } while(1); } void random_fe_non_zero(secp256k1_fe_t *nz) { int tries = 10; while (--tries >= 0) { random_fe(nz); secp256k1_fe_normalize(nz); if (!secp256k1_fe_is_zero(nz)) break; } /* Infinitesimal probability of spurious failure here */ CHECK(tries >= 0); } void random_fe_non_square(secp256k1_fe_t *ns) { random_fe_non_zero(ns); secp256k1_fe_t r; if (secp256k1_fe_sqrt(&r, ns)) { secp256k1_fe_negate(ns, ns, 1); } } int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an); secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn); return secp256k1_fe_equal(&an, &bn); } int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) { secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai); secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1); return check_fe_equal(&x, &one); } void run_field_inv(void) { secp256k1_fe_t x, xi, xii; for (int i=0; i<10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); secp256k1_fe_inv(&xii, &xi); CHECK(check_fe_equal(&x, &xii)); } } void run_field_inv_var(void) { secp256k1_fe_t x, xi, xii; for (int i=0; i<10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv_var(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); secp256k1_fe_inv_var(&xii, &xi); CHECK(check_fe_equal(&x, &xii)); } } void run_field_inv_all(void) { secp256k1_fe_t x[16], xi[16], xii[16]; /* Check it's safe to call for 0 elements */ secp256k1_fe_inv_all(0, xi, x); for (int i=0; iinfinity && b->infinity) return 1; return check_fe_equal(&a->x, &b->x) && check_fe_equal(&a->y, &b->y); } void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { secp256k1_ge_t bb; secp256k1_gej_t bj = *b; secp256k1_ge_set_gej_var(&bb, &bj); CHECK(ge_equals_ge(a, &bb)); } void gej_equals_gej(const secp256k1_gej_t *a, const secp256k1_gej_t *b) { secp256k1_ge_t aa, bb; secp256k1_gej_t aj = *a, bj = *b; secp256k1_ge_set_gej_var(&aa, &aj); secp256k1_ge_set_gej_var(&bb, &bj); CHECK(ge_equals_ge(&aa, &bb)); } void test_ge(void) { char ca[135]; char cb[68]; int rlen; secp256k1_ge_t a, b, i, n; random_group_element_test(&a); random_group_element_test(&b); rlen = sizeof(ca); secp256k1_ge_get_hex(ca,&rlen,&a); CHECK(rlen > 4 && rlen <= (int)sizeof(ca)); rlen = sizeof(cb); secp256k1_ge_get_hex(cb,&rlen,&b); /* Intentionally undersized buffer. */ n = a; secp256k1_fe_normalize(&a.y); secp256k1_fe_negate(&n.y, &a.y, 1); secp256k1_ge_set_infinity(&i); random_field_element_magnitude(&a.x); random_field_element_magnitude(&a.y); random_field_element_magnitude(&b.x); random_field_element_magnitude(&b.y); random_field_element_magnitude(&n.x); random_field_element_magnitude(&n.y); secp256k1_gej_t aj, bj, ij, nj; random_group_element_jacobian_test(&aj, &a); random_group_element_jacobian_test(&bj, &b); secp256k1_gej_set_infinity(&ij); random_group_element_jacobian_test(&nj, &n); random_field_element_magnitude(&aj.x); random_field_element_magnitude(&aj.y); random_field_element_magnitude(&aj.z); random_field_element_magnitude(&bj.x); random_field_element_magnitude(&bj.y); random_field_element_magnitude(&bj.z); random_field_element_magnitude(&nj.x); random_field_element_magnitude(&nj.y); random_field_element_magnitude(&nj.z); /* gej + gej adds */ secp256k1_gej_t aaj; secp256k1_gej_add_var(&aaj, &aj, &aj); secp256k1_gej_t abj; secp256k1_gej_add_var(&abj, &aj, &bj); secp256k1_gej_t aij; secp256k1_gej_add_var(&aij, &aj, &ij); secp256k1_gej_t anj; secp256k1_gej_add_var(&anj, &aj, &nj); secp256k1_gej_t iaj; secp256k1_gej_add_var(&iaj, &ij, &aj); secp256k1_gej_t iij; secp256k1_gej_add_var(&iij, &ij, &ij); /* gej + ge adds */ secp256k1_gej_t aa; secp256k1_gej_add_ge_var(&aa, &aj, &a); secp256k1_gej_t ab; secp256k1_gej_add_ge_var(&ab, &aj, &b); secp256k1_gej_t ai; secp256k1_gej_add_ge_var(&ai, &aj, &i); secp256k1_gej_t an; secp256k1_gej_add_ge_var(&an, &aj, &n); secp256k1_gej_t ia; secp256k1_gej_add_ge_var(&ia, &ij, &a); secp256k1_gej_t ii; secp256k1_gej_add_ge_var(&ii, &ij, &i); /* const gej + ge adds */ secp256k1_gej_t aac; secp256k1_gej_add_ge(&aac, &aj, &a); secp256k1_gej_t abc; secp256k1_gej_add_ge(&abc, &aj, &b); secp256k1_gej_t anc; secp256k1_gej_add_ge(&anc, &aj, &n); secp256k1_gej_t iac; secp256k1_gej_add_ge(&iac, &ij, &a); CHECK(secp256k1_gej_is_infinity(&an)); CHECK(secp256k1_gej_is_infinity(&anj)); CHECK(secp256k1_gej_is_infinity(&anc)); gej_equals_gej(&aa, &aaj); gej_equals_gej(&aa, &aac); gej_equals_gej(&ab, &abj); gej_equals_gej(&ab, &abc); gej_equals_gej(&an, &anj); gej_equals_gej(&an, &anc); gej_equals_gej(&ia, &iaj); gej_equals_gej(&ai, &aij); gej_equals_gej(&ii, &iij); ge_equals_gej(&a, &ai); ge_equals_gej(&a, &ai); ge_equals_gej(&a, &iaj); ge_equals_gej(&a, &iaj); ge_equals_gej(&a, &iac); } void run_ge(void) { for (int i = 0; i < 2000*count; i++) { test_ge(); } } /***** ECMULT TESTS *****/ void run_ecmult_chain(void) { /* random starting point A (on the curve) */ secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64)); secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64)); secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); /* two random initial factors xn and gn */ static const unsigned char xni[32] = { 0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed, 0xb4, 0xd3, 0x8a, 0x8c, 0xe9, 0xb1, 0xb8, 0x4c, 0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9, 0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07 }; secp256k1_scalar_t xn; secp256k1_scalar_set_b32(&xn, xni, NULL); static const unsigned char gni[32] = { 0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42, 0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9, 0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5, 0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde }; secp256k1_scalar_t gn; secp256k1_scalar_set_b32(&gn, gni, NULL); /* two small multipliers to be applied to xn and gn in every iteration: */ static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37}; secp256k1_scalar_t xf; secp256k1_scalar_set_b32(&xf, xfi, NULL); static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13}; secp256k1_scalar_t gf; secp256k1_scalar_set_b32(&gf, gfi, NULL); /* accumulators with the resulting coefficients to A and G */ secp256k1_scalar_t ae; secp256k1_scalar_set_int(&ae, 1); secp256k1_scalar_t ge; secp256k1_scalar_set_int(&ge, 0); /* the point being computed */ secp256k1_gej_t x = a; for (int i=0; i<200*count; i++) { /* in each iteration, compute X = xn*X + gn*G; */ secp256k1_ecmult(&x, &x, &xn, &gn); /* also compute ae and ge: the actual accumulated factors for A and G */ /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */ secp256k1_scalar_mul(&ae, &ae, &xn); secp256k1_scalar_mul(&ge, &ge, &xn); secp256k1_scalar_add(&ge, &ge, &gn); /* modify xn and gn */ secp256k1_scalar_mul(&xn, &xn, &xf); secp256k1_scalar_mul(&gn, &gn, &gf); /* verify */ if (i == 19999) { char res[132]; int resl = 132; secp256k1_gej_get_hex(res, &resl, &x); CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); } } /* redo the computation, but directly with the resulting ae and ge coefficients: */ secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge); char res[132]; int resl = 132; char res2[132]; int resl2 = 132; secp256k1_gej_get_hex(res, &resl, &x); secp256k1_gej_get_hex(res2, &resl2, &x2); CHECK(strcmp(res, res2) == 0); CHECK(strlen(res) == 131); } void test_point_times_order(const secp256k1_gej_t *point) { /* X * (point + G) + (order-X) * (pointer + G) = 0 */ secp256k1_scalar_t x; random_scalar_order_test(&x); secp256k1_scalar_t nx; secp256k1_scalar_negate(&nx, &x); secp256k1_gej_t res1, res2; secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */ secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ secp256k1_gej_add_var(&res1, &res1, &res2); CHECK(secp256k1_gej_is_infinity(&res1)); CHECK(secp256k1_gej_is_valid(&res1) == 0); secp256k1_ge_t res3; secp256k1_ge_set_gej(&res3, &res1); CHECK(secp256k1_ge_is_infinity(&res3)); CHECK(secp256k1_ge_is_valid(&res3) == 0); } void run_point_times_order(void) { secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2)); for (int i=0; i<500; i++) { secp256k1_ge_t p; if (secp256k1_ge_set_xo(&p, &x, 1)) { CHECK(secp256k1_ge_is_valid(&p)); secp256k1_gej_t j; secp256k1_gej_set_ge(&j, &p); CHECK(secp256k1_gej_is_valid(&j)); test_point_times_order(&j); } secp256k1_fe_sqr(&x, &x); } char c[65]; int cl=65; secp256k1_fe_get_hex(c, &cl, &x); CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); } void test_wnaf(const secp256k1_scalar_t *number, int w) { secp256k1_scalar_t x, two, t; secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&two, 2); int wnaf[256]; int bits = secp256k1_ecmult_wnaf(wnaf, number, w); CHECK(bits <= 256); int zeroes = -1; for (int i=bits-1; i>=0; i--) { secp256k1_scalar_mul(&x, &x, &two); int v = wnaf[i]; if (v) { CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */ zeroes=0; CHECK((v & 1) == 1); /* check non-zero elements are odd */ CHECK(v <= (1 << (w-1)) - 1); /* check range below */ CHECK(v >= -(1 << (w-1)) - 1); /* check range above */ } else { CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */ zeroes++; } if (v >= 0) { secp256k1_scalar_set_int(&t, v); } else { secp256k1_scalar_set_int(&t, -v); secp256k1_scalar_negate(&t, &t); } secp256k1_scalar_add(&x, &x, &t); } CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */ } void run_wnaf(void) { secp256k1_scalar_t n; for (int i=0; i= 0 && recid < 4); CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); secp256k1_scalar_t one; secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_add(&msg, &msg, &one); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); } void run_ecdsa_sign_verify(void) { for (int i=0; i<10*count; i++) { test_ecdsa_sign_verify(); } } void test_ecdsa_end_to_end(void) { unsigned char privkey[32]; unsigned char message[32]; /* Generate a random key and message. */ { secp256k1_scalar_t msg, key; random_scalar_order_test(&msg); random_scalar_order_test(&key); secp256k1_scalar_get_b32(privkey, &key); secp256k1_scalar_get_b32(message, &msg); } /* Construct and verify corresponding public key. */ CHECK(secp256k1_ec_seckey_verify(privkey) == 1); unsigned char pubkey[65]; int pubkeylen = 65; CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1); CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen)); /* Verify private key import and export. */ unsigned char seckey[300]; int seckeylen = 300; CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1); unsigned char privkey2[32]; CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1); CHECK(memcmp(privkey, privkey2, 32) == 0); /* Optionally tweak the keys using addition. */ if (secp256k1_rand32() % 3 == 0) { unsigned char rnd[32]; secp256k1_rand256_test(rnd); int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Optionally tweak the keys using multiplication. */ if (secp256k1_rand32() % 3 == 0) { unsigned char rnd[32]; secp256k1_rand256_test(rnd); int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Sign. */ unsigned char signature[72]; int signaturelen = 72; while(1) { unsigned char rnd[32]; secp256k1_rand256_test(rnd); if (secp256k1_ecdsa_sign(message, 32, signature, &signaturelen, privkey, rnd) == 1) { break; } } /* Verify. */ CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1); /* Destroy signature and verify again. */ signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255); CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1); /* Compact sign. */ unsigned char csignature[64]; int recid = 0; while(1) { unsigned char rnd[32]; secp256k1_rand256_test(rnd); if (secp256k1_ecdsa_sign_compact(message, 32, csignature, privkey, rnd, &recid) == 1) { break; } } /* Recover. */ unsigned char recpubkey[65]; int recpubkeylen = 0; CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1); CHECK(recpubkeylen == pubkeylen); CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0); /* Destroy signature and verify again. */ csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255); CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 || memcmp(pubkey, recpubkey, pubkeylen) != 0); CHECK(recpubkeylen == pubkeylen); } void run_ecdsa_end_to_end(void) { for (int i=0; i<64*count; i++) { test_ecdsa_end_to_end(); } } /* Tests several edge cases. */ void test_ecdsa_edge_cases(void) { const unsigned char msg32[32] = { 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's', 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e', 's', 's', 'a', 'g', 'e', '.', '.', '.' }; const unsigned char sig64[64] = { /* Generated by signing the above message with nonce 'This is the nonce we will use...' * and secret key 0 (which is not valid), resulting in recid 0. */ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8, 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96, 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63, 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32, 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E, 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD, 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86, 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57 }; unsigned char pubkey[65]; int pubkeylen = 65; CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0)); CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1)); CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2)); CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3)); /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ const unsigned char sigb64[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, }; unsigned char pubkeyb[33]; int pubkeyblen = 33; for (int recid = 0; recid < 4; recid++) { /* (4,4) encoded in DER. */ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; /* (order + r,4) encoded in DER. */ unsigned char sigbderlong[40] = { 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04 }; CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkeyb, &pubkeyblen, 1, recid)); CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1); for (int recid2 = 0; recid2 < 4; recid2++) { unsigned char pubkey2b[33]; int pubkey2blen = 33; CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkey2b, &pubkey2blen, 1, recid2)); /* Verifying with (order + r,4) should always fail. */ CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1); } /* Damage signature. */ sigbder[7]++; CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0); } /* Test the case where ECDSA recomputes a point that is infinity. */ { secp256k1_ecdsa_sig_t sig; secp256k1_scalar_set_int(&sig.s, 1); secp256k1_scalar_negate(&sig.s, &sig.s); secp256k1_scalar_inverse(&sig.s, &sig.s); secp256k1_scalar_set_int(&sig.r, 1); secp256k1_gej_t keyj; secp256k1_ecmult_gen(&keyj, &sig.r); secp256k1_ge_t key; secp256k1_ge_set_gej(&key, &keyj); secp256k1_scalar_t msg = sig.s; CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0); } /* Test r/s equal to zero */ { /* (1,1) encoded in DER. */ unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01}; unsigned char sigc64[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, }; unsigned char pubkeyc[65]; int pubkeyclen = 65; CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1); CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1); sigcder[4] = 0; sigc64[31] = 0; CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); sigcder[4] = 1; sigcder[7] = 0; sigc64[31] = 1; sigc64[63] = 0; CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); } } void run_ecdsa_edge_cases(void) { test_ecdsa_edge_cases(); } #ifdef ENABLE_OPENSSL_TESTS EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) { unsigned char privkey[300]; int privkeylen; int compr = secp256k1_rand32() & 1; const unsigned char* pbegin = privkey; EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr)); CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); CHECK(EC_KEY_check_key(ec_key)); return ec_key; } void test_ecdsa_openssl(void) { secp256k1_scalar_t key, msg; unsigned char message[32]; secp256k1_rand256_test(message); secp256k1_scalar_set_b32(&msg, message, NULL); random_scalar_order_test(&key); secp256k1_gej_t qj; secp256k1_ecmult_gen(&qj, &key); secp256k1_ge_t q; secp256k1_ge_set_gej(&q, &qj); EC_KEY *ec_key = get_openssl_key(&key); CHECK(ec_key); unsigned char signature[80]; unsigned int sigsize = 80; CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); secp256k1_ecdsa_sig_t sig; CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); secp256k1_scalar_t one; secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_t msg2; secp256k1_scalar_add(&msg2, &msg, &one); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2)); random_sign(&sig, &key, &msg, NULL); int secp_sigsize = 80; CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig)); CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1); EC_KEY_free(ec_key); } void run_ecdsa_openssl(void) { for (int i=0; i<10*count; i++) { test_ecdsa_openssl(); } } #endif int main(int argc, char **argv) { /* find iteration count */ if (argc > 1) { count = strtol(argv[1], NULL, 0); } /* find random seed */ uint64_t seed; if (argc > 2) { seed = strtoull(argv[2], NULL, 0); } else { FILE *frand = fopen("/dev/urandom", "r"); if (!frand || !fread(&seed, sizeof(seed), 1, frand)) { seed = time(NULL) * 1337; } fclose(frand); } secp256k1_rand_seed(seed); printf("test count = %i\n", count); printf("random seed = %llu\n", (unsigned long long)seed); /* initialize */ secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); /* initializing a second time shouldn't cause any harm or memory leaks. */ secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); /* Likewise, re-running the internal init functions should be harmless. */ secp256k1_fe_start(); secp256k1_ge_start(); secp256k1_scalar_start(); secp256k1_ecdsa_start(); #ifndef USE_NUM_NONE /* num tests */ run_num_smalltests(); #endif /* scalar tests */ run_scalar_tests(); /* field tests */ run_field_inv(); run_field_inv_var(); run_field_inv_all(); run_field_inv_all_var(); run_sqr(); run_sqrt(); /* group tests */ run_ge(); /* ecmult tests */ run_wnaf(); run_point_times_order(); run_ecmult_chain(); /* ecdsa tests */ run_ecdsa_sign_verify(); run_ecdsa_end_to_end(); run_ecdsa_edge_cases(); #ifdef ENABLE_OPENSSL_TESTS run_ecdsa_openssl(); #endif printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32)); /* shutdown */ secp256k1_stop(); /* shutting down twice shouldn't cause any double frees. */ secp256k1_stop(); /* Same for the internal shutdown functions. */ secp256k1_fe_stop(); secp256k1_ge_stop(); secp256k1_scalar_stop(); secp256k1_ecdsa_stop(); return 0; }