// Copyright (c) 2014-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include /* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */ static int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; } static const std::string StateName(ThresholdState state) { switch (state) { case ThresholdState::DEFINED: return "DEFINED"; case ThresholdState::STARTED: return "STARTED"; case ThresholdState::LOCKED_IN: return "LOCKED_IN"; case ThresholdState::ACTIVE: return "ACTIVE"; case ThresholdState::FAILED: return "FAILED"; } // no default case, so the compiler can warn about missing cases return ""; } static const Consensus::Params paramsDummy = Consensus::Params(); class TestConditionChecker : public AbstractThresholdConditionChecker { private: mutable ThresholdConditionCache cache; public: int64_t BeginTime(const Consensus::Params& params) const override { return TestTime(10000); } int64_t EndTime(const Consensus::Params& params) const override { return TestTime(20000); } int Period(const Consensus::Params& params) const override { return 1000; } int Threshold(const Consensus::Params& params) const override { return 900; } bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override { return (pindex->nVersion & 0x100); } ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); } int GetStateSinceHeightFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache); } }; class TestDelayedActivationConditionChecker : public TestConditionChecker { public: int MinActivationHeight(const Consensus::Params& params) const override { return 15000; } }; class TestAlwaysActiveConditionChecker : public TestConditionChecker { public: int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::ALWAYS_ACTIVE; } }; class TestNeverActiveConditionChecker : public TestConditionChecker { public: int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::NEVER_ACTIVE; } }; #define CHECKERS 6 class VersionBitsTester { // A fake blockchain std::vector vpblock; // 6 independent checkers for the same bit. // The first one performs all checks, the second only 50%, the third only 25%, etc... // This is to test whether lack of cached information leads to the same results. TestConditionChecker checker[CHECKERS]; // Another 6 that assume delayed activation TestDelayedActivationConditionChecker checker_delayed[CHECKERS]; // Another 6 that assume always active activation TestAlwaysActiveConditionChecker checker_always[CHECKERS]; // Another 6 that assume never active activation TestNeverActiveConditionChecker checker_never[CHECKERS]; // Test counter (to identify failures) int num; public: VersionBitsTester() : num(1000) {} VersionBitsTester& Reset() { // Have each group of tests be counted by the 1000s part, starting at 1000 num = num - (num % 1000) + 1000; for (unsigned int i = 0; i < vpblock.size(); i++) { delete vpblock[i]; } for (unsigned int i = 0; i < CHECKERS; i++) { checker[i] = TestConditionChecker(); checker_delayed[i] = TestDelayedActivationConditionChecker(); checker_always[i] = TestAlwaysActiveConditionChecker(); checker_never[i] = TestNeverActiveConditionChecker(); } vpblock.clear(); return *this; } ~VersionBitsTester() { Reset(); } VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) { while (vpblock.size() < height) { CBlockIndex* pindex = new CBlockIndex(); pindex->nHeight = vpblock.size(); pindex->pprev = Tip(); pindex->nTime = nTime; pindex->nVersion = nVersion; pindex->BuildSkip(); vpblock.push_back(pindex); } return *this; } VersionBitsTester& TestStateSinceHeight(int height) { return TestStateSinceHeight(height, height); } VersionBitsTester& TestStateSinceHeight(int height, int height_delayed) { const CBlockIndex* tip = Tip(); for (int i = 0; i < CHECKERS; i++) { if (InsecureRandBits(i) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num)); BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num)); BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num)); BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num)); } } num++; return *this; } VersionBitsTester& TestState(ThresholdState exp) { return TestState(exp, exp); } VersionBitsTester& TestState(ThresholdState exp, ThresholdState exp_delayed) { if (exp != exp_delayed) { // only expected differences are that delayed stays in locked_in longer BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE); BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN); } const CBlockIndex* pindex = Tip(); for (int i = 0; i < CHECKERS; i++) { if (InsecureRandBits(i) == 0) { ThresholdState got = checker[i].GetStateFor(pindex); ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex); ThresholdState got_always = checker_always[i].GetStateFor(pindex); ThresholdState got_never = checker_never[i].GetStateFor(pindex); // nHeight of the next block. If vpblock is empty, the next (ie first) // block should be the genesis block with nHeight == 0. int height = pindex == nullptr ? 0 : pindex->nHeight + 1; BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got))); BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed))); BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always))); BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never))); } } num++; return *this; } VersionBitsTester& TestDefined() { return TestState(ThresholdState::DEFINED); } VersionBitsTester& TestStarted() { return TestState(ThresholdState::STARTED); } VersionBitsTester& TestLockedIn() { return TestState(ThresholdState::LOCKED_IN); } VersionBitsTester& TestActive() { return TestState(ThresholdState::ACTIVE); } VersionBitsTester& TestFailed() { return TestState(ThresholdState::FAILED); } // non-delayed should be active; delayed should still be locked in VersionBitsTester& TestActiveDelayed() { return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN); } CBlockIndex* Tip() { return vpblock.empty() ? nullptr : vpblock.back(); } }; BOOST_FIXTURE_TEST_SUITE(versionbits_tests, TestingSetup) BOOST_AUTO_TEST_CASE(versionbits_test) { for (int i = 0; i < 64; i++) { // DEFINED -> FAILED VersionBitsTester().TestDefined().TestStateSinceHeight(0) .Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0) .Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0) .Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0) .Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) .Mine(1000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(1000) .Mine(1999, TestTime(30001), 0x100).TestFailed().TestStateSinceHeight(1000) .Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(1000) .Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(1000) .Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(1000) .Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(1000) // DEFINED -> STARTED -> FAILED .Reset().TestDefined().TestStateSinceHeight(0) .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) .Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined .Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period .Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks .Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000) .Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000) // DEFINED -> STARTED -> FAILED while threshold reached .Reset().TestDefined().TestStateSinceHeight(0) .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period .Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks .Mine(3000, TestTime(30000), 0x100).TestFailed().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new) .Mine(3999, TestTime(30001), 0).TestFailed().TestStateSinceHeight(3000) .Mine(4000, TestTime(30002), 0).TestFailed().TestStateSinceHeight(3000) .Mine(14333, TestTime(30003), 0).TestFailed().TestStateSinceHeight(3000) .Mine(24000, TestTime(40000), 0).TestFailed().TestStateSinceHeight(3000) // DEFINED -> STARTED -> LOCKEDIN at the last minute -> ACTIVE .Reset().TestDefined() .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0) .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period .Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks .Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks .Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000) .Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000) .Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000 .Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) .Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000) .Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000) // DEFINED multiple periods -> STARTED multiple periods -> FAILED .Reset().TestDefined().TestStateSinceHeight(0) .Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0) .Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0) .Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0) .Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) .Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) .Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000) .Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000) .Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) ; } } BOOST_AUTO_TEST_CASE(versionbits_sanity) { // Sanity checks of version bit deployments const auto chainParams = CreateChainParams(*m_node.args, CBaseChainParams::MAIN); const Consensus::Params &mainnetParams = chainParams->GetConsensus(); for (int i=0; i<(int) Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) { uint32_t bitmask = VersionBitsMask(mainnetParams, static_cast(i)); // Make sure that no deployment tries to set an invalid bit. BOOST_CHECK_EQUAL(bitmask & ~(uint32_t)VERSIONBITS_TOP_MASK, bitmask); // Check min_activation_height is on a retarget boundary BOOST_CHECK_EQUAL(mainnetParams.vDeployments[i].min_activation_height % mainnetParams.nMinerConfirmationWindow, 0); // Check min_activation_height is 0 for ALWAYS_ACTIVE and never active deployments if (mainnetParams.vDeployments[i].nStartTime == Consensus::BIP9Deployment::ALWAYS_ACTIVE || mainnetParams.vDeployments[i].nStartTime == Consensus::BIP9Deployment::NEVER_ACTIVE) { BOOST_CHECK_EQUAL(mainnetParams.vDeployments[i].min_activation_height, 0); } // Verify that the deployment windows of different deployment using the // same bit are disjoint. // This test may need modification at such time as a new deployment // is proposed that reuses the bit of an activated soft fork, before the // end time of that soft fork. (Alternatively, the end time of that // activated soft fork could be later changed to be earlier to avoid // overlap.) for (int j=i+1; j<(int) Consensus::MAX_VERSION_BITS_DEPLOYMENTS; j++) { if (VersionBitsMask(mainnetParams, static_cast(j)) == bitmask) { BOOST_CHECK(mainnetParams.vDeployments[j].nStartTime > mainnetParams.vDeployments[i].nTimeout || mainnetParams.vDeployments[i].nStartTime > mainnetParams.vDeployments[j].nTimeout); } } } } /** Check that ComputeBlockVersion will set the appropriate bit correctly */ static void check_computeblockversion(const Consensus::Params& params, Consensus::DeploymentPos dep) { // This implicitly uses versionbitscache, so clear it every time versionbitscache.Clear(); int64_t bit = params.vDeployments[dep].bit; int64_t nStartTime = params.vDeployments[dep].nStartTime; int64_t nTimeout = params.vDeployments[dep].nTimeout; int min_activation_height = params.vDeployments[dep].min_activation_height; // should not be any signalling for first block BOOST_CHECK_EQUAL(ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS); // always/never active deployments shouldn't need to be tested further if (nStartTime == Consensus::BIP9Deployment::ALWAYS_ACTIVE) return; if (nStartTime == Consensus::BIP9Deployment::NEVER_ACTIVE) return; BOOST_REQUIRE(nStartTime < nTimeout); BOOST_REQUIRE(nStartTime >= 0); BOOST_REQUIRE(nTimeout <= std::numeric_limits::max() || nTimeout == Consensus::BIP9Deployment::NO_TIMEOUT); BOOST_REQUIRE(0 <= bit && bit < 32); BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0); BOOST_REQUIRE(min_activation_height >= 0); BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0); // In the first chain, test that the bit is set by CBV until it has failed. // In the second chain, test the bit is set by CBV while STARTED and // LOCKED-IN, and then no longer set while ACTIVE. VersionBitsTester firstChain, secondChain; int64_t nTime = nStartTime; const CBlockIndex *lastBlock = nullptr; // Before MedianTimePast of the chain has crossed nStartTime, the bit // should not be set. if (nTime == 0) { // since CBlockIndex::nTime is uint32_t we can't represent any // earlier time, so will transition from DEFINED to STARTED at the // end of the first period by mining blocks at nTime == 0 lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, params) & (1< 0) { lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); BOOST_CHECK((ComputeBlockVersion(lastBlock, params) & (1<nHeight + 1 < min_activation_height) { // check signalling continues while min_activation_height is not reached lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); BOOST_CHECK((ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0); // then reach min_activation_height, which was already REQUIRE'd to start a new period lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); } // Check that we don't signal after activation BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, params) & (1<GetConsensus(), static_cast(i)); } } { // Use regtest/testdummy to ensure we always exercise some // deployment that's not always/never active ArgsManager args; args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008 const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST); check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY); } { // Use regtest/testdummy to ensure we always exercise the // min_activation_height test, even if we're not using that in a // live deployment ArgsManager args; args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200 const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST); check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY); } } BOOST_AUTO_TEST_SUITE_END()