// Copyright (c) 2011-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include BOOST_AUTO_TEST_SUITE(uint256_tests) const unsigned char R1Array[] = "\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2" "\x22\x81\xaa\xb5\x33\xf0\x08\x32\xd5\x56\xb1\xf9\xea\xe5\x1d\x7d"; const char R1ArrayHex[] = "7D1DE5EAF9B156D53208F033B5AA8122D2d2355d5e12292b121156cfdb4a529c"; const uint256 R1L = uint256(std::vector(R1Array,R1Array+32)); const uint160 R1S = uint160(std::vector(R1Array,R1Array+20)); const unsigned char R2Array[] = "\x70\x32\x1d\x7c\x47\xa5\x6b\x40\x26\x7e\x0a\xc3\xa6\x9c\xb6\xbf" "\x13\x30\x47\xa3\x19\x2d\xda\x71\x49\x13\x72\xf0\xb4\xca\x81\xd7"; const uint256 R2L = uint256(std::vector(R2Array,R2Array+32)); const uint160 R2S = uint160(std::vector(R2Array,R2Array+20)); const unsigned char ZeroArray[] = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const uint256 ZeroL = uint256(std::vector(ZeroArray,ZeroArray+32)); const uint160 ZeroS = uint160(std::vector(ZeroArray,ZeroArray+20)); const unsigned char OneArray[] = "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const uint256 OneL = uint256(std::vector(OneArray,OneArray+32)); const uint160 OneS = uint160(std::vector(OneArray,OneArray+20)); const unsigned char MaxArray[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"; const uint256 MaxL = uint256(std::vector(MaxArray,MaxArray+32)); const uint160 MaxS = uint160(std::vector(MaxArray,MaxArray+20)); static std::string ArrayToString(const unsigned char A[], unsigned int width) { std::stringstream Stream; Stream << std::hex; for (unsigned int i = 0; i < width; ++i) { Stream<): BOOST_CHECK_EQUAL(R1L.ToString(), ArrayToString(R1Array,32)); BOOST_CHECK_EQUAL(R1S.ToString(), ArrayToString(R1Array,20)); BOOST_CHECK_EQUAL(R2L.ToString(), ArrayToString(R2Array,32)); BOOST_CHECK_EQUAL(R2S.ToString(), ArrayToString(R2Array,20)); BOOST_CHECK_EQUAL(ZeroL.ToString(), ArrayToString(ZeroArray,32)); BOOST_CHECK_EQUAL(ZeroS.ToString(), ArrayToString(ZeroArray,20)); BOOST_CHECK_EQUAL(OneL.ToString(), ArrayToString(OneArray,32)); BOOST_CHECK_EQUAL(OneS.ToString(), ArrayToString(OneArray,20)); BOOST_CHECK_EQUAL(MaxL.ToString(), ArrayToString(MaxArray,32)); BOOST_CHECK_EQUAL(MaxS.ToString(), ArrayToString(MaxArray,20)); BOOST_CHECK_NE(OneL.ToString(), ArrayToString(ZeroArray,32)); BOOST_CHECK_NE(OneS.ToString(), ArrayToString(ZeroArray,20)); // == and != BOOST_CHECK_NE(R1L, R2L); BOOST_CHECK_NE(R1S, R2S); BOOST_CHECK_NE(ZeroL, OneL); BOOST_CHECK_NE(ZeroS, OneS); BOOST_CHECK_NE(OneL, ZeroL); BOOST_CHECK_NE(OneS, ZeroS); BOOST_CHECK_NE(MaxL, ZeroL); BOOST_CHECK_NE(MaxS, ZeroS); // String Constructor and Copy Constructor BOOST_CHECK_EQUAL(uint256::FromHex(R1L.ToString()).value(), R1L); BOOST_CHECK_EQUAL(uint256::FromHex(R2L.ToString()).value(), R2L); BOOST_CHECK_EQUAL(uint256::FromHex(ZeroL.ToString()).value(), ZeroL); BOOST_CHECK_EQUAL(uint256::FromHex(OneL.ToString()).value(), OneL); BOOST_CHECK_EQUAL(uint256::FromHex(MaxL.ToString()).value(), MaxL); BOOST_CHECK_EQUAL(uint256::FromHex(R1ArrayHex).value(), R1L); BOOST_CHECK_EQUAL(uint256(R1L), R1L); BOOST_CHECK_EQUAL(uint256(ZeroL), ZeroL); BOOST_CHECK_EQUAL(uint256(OneL), OneL); BOOST_CHECK_EQUAL(uint160::FromHex(R1S.ToString()).value(), R1S); BOOST_CHECK_EQUAL(uint160::FromHex(R2S.ToString()).value(), R2S); BOOST_CHECK_EQUAL(uint160::FromHex(ZeroS.ToString()).value(), ZeroS); BOOST_CHECK_EQUAL(uint160::FromHex(OneS.ToString()).value(), OneS); BOOST_CHECK_EQUAL(uint160::FromHex(MaxS.ToString()).value(), MaxS); BOOST_CHECK_EQUAL(uint160::FromHex(std::string_view{R1ArrayHex + 24, 40}).value(), R1S); BOOST_CHECK_EQUAL(uint160(R1S), R1S); BOOST_CHECK_EQUAL(uint160(ZeroS), ZeroS); BOOST_CHECK_EQUAL(uint160(OneS), OneS); } BOOST_AUTO_TEST_CASE( comparison ) // <= >= < > { uint256 LastL; for (int i = 255; i >= 0; --i) { uint256 TmpL; *(TmpL.begin() + (i>>3)) |= 1<<(7-(i&7)); BOOST_CHECK_LT(LastL, TmpL); LastL = TmpL; } BOOST_CHECK_LT(ZeroL, R1L); BOOST_CHECK_LT(R2L, R1L); BOOST_CHECK_LT(ZeroL, OneL); BOOST_CHECK_LT(OneL, MaxL); BOOST_CHECK_LT(R1L, MaxL); BOOST_CHECK_LT(R2L, MaxL); uint160 LastS; for (int i = 159; i >= 0; --i) { uint160 TmpS; *(TmpS.begin() + (i>>3)) |= 1<<(7-(i&7)); BOOST_CHECK_LT(LastS, TmpS); LastS = TmpS; } BOOST_CHECK_LT(ZeroS, R1S); BOOST_CHECK_LT(R2S, R1S); BOOST_CHECK_LT(ZeroS, OneS); BOOST_CHECK_LT(OneS, MaxS); BOOST_CHECK_LT(R1S, MaxS); BOOST_CHECK_LT(R2S, MaxS); // Non-arithmetic uint256s compare from the beginning of their inner arrays: BOOST_CHECK_LT(R2L, R1L); // Ensure first element comparisons give the same order as above: BOOST_CHECK_LT(*R2L.begin(), *R1L.begin()); // Ensure last element comparisons give a different result (swapped params): BOOST_CHECK_LT(*(R1L.end()-1), *(R2L.end()-1)); // Hex strings represent reverse-encoded bytes, with lexicographic ordering: BOOST_CHECK_LT(uint256{"1000000000000000000000000000000000000000000000000000000000000000"}, uint256{"0000000000000000000000000000000000000000000000000000000000000001"}); } BOOST_AUTO_TEST_CASE(methods) // GetHex SetHexDeprecated FromHex begin() end() size() GetLow64 GetSerializeSize, Serialize, Unserialize { BOOST_CHECK_EQUAL(R1L.GetHex(), R1L.ToString()); BOOST_CHECK_EQUAL(R2L.GetHex(), R2L.ToString()); BOOST_CHECK_EQUAL(OneL.GetHex(), OneL.ToString()); BOOST_CHECK_EQUAL(MaxL.GetHex(), MaxL.ToString()); uint256 TmpL(R1L); BOOST_CHECK_EQUAL(TmpL, R1L); // Verify previous values don't persist when setting to truncated string. TmpL.SetHexDeprecated("21"); BOOST_CHECK_EQUAL(TmpL.ToString(), "0000000000000000000000000000000000000000000000000000000000000021"); BOOST_CHECK_EQUAL(uint256::FromHex(R2L.ToString()).value(), R2L); BOOST_CHECK_EQUAL(uint256::FromHex(ZeroL.ToString()).value(), uint256()); TmpL = uint256::FromHex(R1L.ToString()).value(); BOOST_CHECK_EQUAL_COLLECTIONS(R1L.begin(), R1L.end(), R1Array, R1Array + uint256::size()); BOOST_CHECK_EQUAL_COLLECTIONS(TmpL.begin(), TmpL.end(), R1Array, R1Array + uint256::size()); BOOST_CHECK_EQUAL_COLLECTIONS(R2L.begin(), R2L.end(), R2Array, R2Array + uint256::size()); BOOST_CHECK_EQUAL_COLLECTIONS(ZeroL.begin(), ZeroL.end(), ZeroArray, ZeroArray + uint256::size()); BOOST_CHECK_EQUAL_COLLECTIONS(OneL.begin(), OneL.end(), OneArray, OneArray + uint256::size()); BOOST_CHECK_EQUAL(R1L.size(), sizeof(R1L)); BOOST_CHECK_EQUAL(sizeof(R1L), 32); BOOST_CHECK_EQUAL(R1L.size(), 32); BOOST_CHECK_EQUAL(R2L.size(), 32); BOOST_CHECK_EQUAL(ZeroL.size(), 32); BOOST_CHECK_EQUAL(MaxL.size(), 32); BOOST_CHECK_EQUAL(R1L.begin() + 32, R1L.end()); BOOST_CHECK_EQUAL(R2L.begin() + 32, R2L.end()); BOOST_CHECK_EQUAL(OneL.begin() + 32, OneL.end()); BOOST_CHECK_EQUAL(MaxL.begin() + 32, MaxL.end()); BOOST_CHECK_EQUAL(TmpL.begin() + 32, TmpL.end()); BOOST_CHECK_EQUAL(GetSerializeSize(R1L), 32); BOOST_CHECK_EQUAL(GetSerializeSize(ZeroL), 32); DataStream ss{}; ss << R1L; BOOST_CHECK_EQUAL(ss.str(), std::string(R1Array,R1Array+32)); ss >> TmpL; BOOST_CHECK_EQUAL(R1L, TmpL); ss.clear(); ss << ZeroL; BOOST_CHECK_EQUAL(ss.str(), std::string(ZeroArray,ZeroArray+32)); ss >> TmpL; BOOST_CHECK_EQUAL(ZeroL, TmpL); ss.clear(); ss << MaxL; BOOST_CHECK_EQUAL(ss.str(), std::string(MaxArray,MaxArray+32)); ss >> TmpL; BOOST_CHECK_EQUAL(MaxL, TmpL); ss.clear(); BOOST_CHECK_EQUAL(R1S.GetHex(), R1S.ToString()); BOOST_CHECK_EQUAL(R2S.GetHex(), R2S.ToString()); BOOST_CHECK_EQUAL(OneS.GetHex(), OneS.ToString()); BOOST_CHECK_EQUAL(MaxS.GetHex(), MaxS.ToString()); uint160 TmpS(R1S); BOOST_CHECK_EQUAL(TmpS, R1S); BOOST_CHECK_EQUAL(uint160::FromHex(R2S.ToString()).value(), R2S); BOOST_CHECK_EQUAL(uint160::FromHex(ZeroS.ToString()).value(), uint160()); TmpS = uint160::FromHex(R1S.ToString()).value(); BOOST_CHECK_EQUAL_COLLECTIONS(R1S.begin(), R1S.end(), R1Array, R1Array + uint160::size()); BOOST_CHECK_EQUAL_COLLECTIONS(TmpS.begin(), TmpS.end(), R1Array, R1Array + uint160::size()); BOOST_CHECK_EQUAL_COLLECTIONS(R2S.begin(), R2S.end(), R2Array, R2Array + uint160::size()); BOOST_CHECK_EQUAL_COLLECTIONS(ZeroS.begin(), ZeroS.end(), ZeroArray, ZeroArray + uint160::size()); BOOST_CHECK_EQUAL_COLLECTIONS(OneS.begin(), OneS.end(), OneArray, OneArray + uint160::size()); BOOST_CHECK_EQUAL(R1S.size(), sizeof(R1S)); BOOST_CHECK_EQUAL(sizeof(R1S), 20); BOOST_CHECK_EQUAL(R1S.size(), 20); BOOST_CHECK_EQUAL(R2S.size(), 20); BOOST_CHECK_EQUAL(ZeroS.size(), 20); BOOST_CHECK_EQUAL(MaxS.size(), 20); BOOST_CHECK_EQUAL(R1S.begin() + 20, R1S.end()); BOOST_CHECK_EQUAL(R2S.begin() + 20, R2S.end()); BOOST_CHECK_EQUAL(OneS.begin() + 20, OneS.end()); BOOST_CHECK_EQUAL(MaxS.begin() + 20, MaxS.end()); BOOST_CHECK_EQUAL(TmpS.begin() + 20, TmpS.end()); BOOST_CHECK_EQUAL(GetSerializeSize(R1S), 20); BOOST_CHECK_EQUAL(GetSerializeSize(ZeroS), 20); ss << R1S; BOOST_CHECK_EQUAL(ss.str(), std::string(R1Array,R1Array+20)); ss >> TmpS; BOOST_CHECK_EQUAL(R1S, TmpS); ss.clear(); ss << ZeroS; BOOST_CHECK_EQUAL(ss.str(), std::string(ZeroArray,ZeroArray+20)); ss >> TmpS; BOOST_CHECK_EQUAL(ZeroS, TmpS); ss.clear(); ss << MaxS; BOOST_CHECK_EQUAL(ss.str(), std::string(MaxArray,MaxArray+20)); ss >> TmpS; BOOST_CHECK_EQUAL(MaxS, TmpS); ss.clear(); } /** * Implemented as a templated function so it can be reused by other classes that have a FromHex() * method that wraps base_blob::FromHex(), such as transaction_identifier::FromHex(). */ template void TestFromHex() { constexpr unsigned int num_chars{T::size() * 2}; static_assert(num_chars <= 64); // this test needs to be modified to allow for more than 64 hex chars const std::string valid_64char_input{"0123456789abcdef0123456789ABCDEF0123456789abcdef0123456789ABCDEF"}; const auto valid_input{valid_64char_input.substr(0, num_chars)}; { // check that lower and upper case hex characters are accepted auto valid_result{T::FromHex(valid_input)}; BOOST_REQUIRE(valid_result); BOOST_CHECK_EQUAL(valid_result->ToString(), ToLower(valid_input)); } { // check that only strings of size num_chars are accepted BOOST_CHECK(!T::FromHex("")); BOOST_CHECK(!T::FromHex("0")); BOOST_CHECK(!T::FromHex(valid_input.substr(0, num_chars / 2))); BOOST_CHECK(!T::FromHex(valid_input.substr(0, num_chars - 1))); BOOST_CHECK(!T::FromHex(valid_input + "0")); } { // check that non-hex characters are not accepted std::string invalid_chars{R"( !"#$%&'()*+,-./:;<=>?@GHIJKLMNOPQRSTUVWXYZ[\]^_`ghijklmnopqrstuvwxyz{|}~)"}; for (auto c : invalid_chars) { BOOST_CHECK(!T::FromHex(valid_input.substr(0, num_chars - 1) + c)); } // 0x prefixes are invalid std::string invalid_prefix{"0x" + valid_input}; BOOST_CHECK(!T::FromHex(std::string_view(invalid_prefix.data(), num_chars))); BOOST_CHECK(!T::FromHex(invalid_prefix)); } { // check that string_view length is respected std::string chars_68{valid_64char_input + "0123"}; BOOST_CHECK_EQUAL(T::FromHex(std::string_view(chars_68.data(), num_chars)).value().ToString(), ToLower(valid_input)); BOOST_CHECK(!T::FromHex(std::string_view(chars_68.data(), num_chars - 1))); // too short BOOST_CHECK(!T::FromHex(std::string_view(chars_68.data(), num_chars + 1))); // too long } } BOOST_AUTO_TEST_CASE(from_hex) { TestFromHex(); TestFromHex(); TestFromHex(); TestFromHex(); } BOOST_AUTO_TEST_CASE(from_user_hex) { BOOST_CHECK_EQUAL(uint256::FromUserHex(""), uint256::ZERO); BOOST_CHECK_EQUAL(uint256::FromUserHex("0x"), uint256::ZERO); BOOST_CHECK_EQUAL(uint256::FromUserHex("0"), uint256::ZERO); BOOST_CHECK_EQUAL(uint256::FromUserHex("00"), uint256::ZERO); BOOST_CHECK_EQUAL(uint256::FromUserHex("1"), uint256::ONE); BOOST_CHECK_EQUAL(uint256::FromUserHex("0x10"), uint256{0x10}); BOOST_CHECK_EQUAL(uint256::FromUserHex("10"), uint256{0x10}); BOOST_CHECK_EQUAL(uint256::FromUserHex("0xFf"), uint256{0xff}); BOOST_CHECK_EQUAL(uint256::FromUserHex("Ff"), uint256{0xff}); const std::string valid_hex_64{"0x0123456789abcdef0123456789abcdef0123456789ABDCEF0123456789ABCDEF"}; BOOST_REQUIRE_EQUAL(valid_hex_64.size(), 2 + 64); // 0x prefix and 64 hex digits BOOST_CHECK_EQUAL(uint256::FromUserHex(valid_hex_64.substr(2)).value().ToString(), ToLower(valid_hex_64.substr(2))); BOOST_CHECK_EQUAL(uint256::FromUserHex(valid_hex_64.substr(0)).value().ToString(), ToLower(valid_hex_64.substr(2))); BOOST_CHECK(!uint256::FromUserHex("0x0 ")); // no spaces at end, BOOST_CHECK(!uint256::FromUserHex(" 0x0")); // or beginning, BOOST_CHECK(!uint256::FromUserHex("0x 0")); // or middle, BOOST_CHECK(!uint256::FromUserHex(" ")); // etc. BOOST_CHECK(!uint256::FromUserHex("0x0ga")); // invalid character BOOST_CHECK(!uint256::FromUserHex("x0")); // broken prefix BOOST_CHECK(!uint256::FromUserHex("0x0x00")); // two prefixes not allowed BOOST_CHECK(!uint256::FromUserHex(valid_hex_64.substr(2) + "0")); // 1 hex digit too many BOOST_CHECK(!uint256::FromUserHex(valid_hex_64 + "a")); // 1 hex digit too many BOOST_CHECK(!uint256::FromUserHex(valid_hex_64 + " ")); // whitespace after max length BOOST_CHECK(!uint256::FromUserHex(valid_hex_64 + "z")); // invalid character after max length } BOOST_AUTO_TEST_CASE( check_ONE ) { uint256 one = uint256{"0000000000000000000000000000000000000000000000000000000000000001"}; BOOST_CHECK_EQUAL(one, uint256::ONE); } BOOST_AUTO_TEST_CASE(FromHex_vs_uint256) { auto runtime_uint{uint256::FromHex("4A5E1E4BAAB89F3A32518A88C31BC87F618f76673e2cc77ab2127b7afdeda33b")}; constexpr uint256 consteval_uint{ "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"}; BOOST_CHECK_EQUAL(consteval_uint, runtime_uint); } BOOST_AUTO_TEST_SUITE_END()