// Copyright (c) 2012-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include using namespace std::string_literals; BOOST_FIXTURE_TEST_SUITE(streams_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(streams_vector_writer) { unsigned char a(1); unsigned char b(2); unsigned char bytes[] = { 3, 4, 5, 6 }; std::vector vch; // Each test runs twice. Serializing a second time at the same starting // point should yield the same results, even if the first test grew the // vector. CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, a, b); BOOST_CHECK((vch == std::vector{{1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, a, b); BOOST_CHECK((vch == std::vector{{1, 2}})); vch.clear(); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); vch.clear(); vch.resize(5, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); vch.clear(); vch.resize(4, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 3, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 3, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); vch.clear(); vch.resize(4, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 4, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 4, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); vch.clear(); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, bytes); BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, bytes); BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); vch.clear(); vch.resize(4, 8); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, bytes, b); BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, bytes, b); BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); vch.clear(); } BOOST_AUTO_TEST_CASE(streams_vector_reader) { std::vector vch = {1, 255, 3, 4, 5, 6}; SpanReader reader{SER_NETWORK, INIT_PROTO_VERSION, vch}; BOOST_CHECK_EQUAL(reader.size(), 6U); BOOST_CHECK(!reader.empty()); // Read a single byte as an unsigned char. unsigned char a; reader >> a; BOOST_CHECK_EQUAL(a, 1); BOOST_CHECK_EQUAL(reader.size(), 5U); BOOST_CHECK(!reader.empty()); // Read a single byte as a signed char. signed char b; reader >> b; BOOST_CHECK_EQUAL(b, -1); BOOST_CHECK_EQUAL(reader.size(), 4U); BOOST_CHECK(!reader.empty()); // Read a 4 bytes as an unsigned int. unsigned int c; reader >> c; BOOST_CHECK_EQUAL(c, 100992003U); // 3,4,5,6 in little-endian base-256 BOOST_CHECK_EQUAL(reader.size(), 0U); BOOST_CHECK(reader.empty()); // Reading after end of byte vector throws an error. signed int d; BOOST_CHECK_THROW(reader >> d, std::ios_base::failure); // Read a 4 bytes as a signed int from the beginning of the buffer. SpanReader new_reader{SER_NETWORK, INIT_PROTO_VERSION, vch}; new_reader >> d; BOOST_CHECK_EQUAL(d, 67370753); // 1,255,3,4 in little-endian base-256 BOOST_CHECK_EQUAL(new_reader.size(), 2U); BOOST_CHECK(!new_reader.empty()); // Reading after end of byte vector throws an error even if the reader is // not totally empty. BOOST_CHECK_THROW(new_reader >> d, std::ios_base::failure); } BOOST_AUTO_TEST_CASE(streams_vector_reader_rvalue) { std::vector data{0x82, 0xa7, 0x31}; SpanReader reader{SER_NETWORK, INIT_PROTO_VERSION, data}; uint32_t varint = 0; // Deserialize into r-value reader >> VARINT(varint); BOOST_CHECK_EQUAL(varint, 54321U); BOOST_CHECK(reader.empty()); } BOOST_AUTO_TEST_CASE(bitstream_reader_writer) { DataStream data{}; BitStreamWriter bit_writer{data}; bit_writer.Write(0, 1); bit_writer.Write(2, 2); bit_writer.Write(6, 3); bit_writer.Write(11, 4); bit_writer.Write(1, 5); bit_writer.Write(32, 6); bit_writer.Write(7, 7); bit_writer.Write(30497, 16); bit_writer.Flush(); DataStream data_copy{data}; uint32_t serialized_int1; data >> serialized_int1; BOOST_CHECK_EQUAL(serialized_int1, uint32_t{0x7700C35A}); // NOTE: Serialized as LE uint16_t serialized_int2; data >> serialized_int2; BOOST_CHECK_EQUAL(serialized_int2, uint16_t{0x1072}); // NOTE: Serialized as LE BitStreamReader bit_reader{data_copy}; BOOST_CHECK_EQUAL(bit_reader.Read(1), 0U); BOOST_CHECK_EQUAL(bit_reader.Read(2), 2U); BOOST_CHECK_EQUAL(bit_reader.Read(3), 6U); BOOST_CHECK_EQUAL(bit_reader.Read(4), 11U); BOOST_CHECK_EQUAL(bit_reader.Read(5), 1U); BOOST_CHECK_EQUAL(bit_reader.Read(6), 32U); BOOST_CHECK_EQUAL(bit_reader.Read(7), 7U); BOOST_CHECK_EQUAL(bit_reader.Read(16), 30497U); BOOST_CHECK_THROW(bit_reader.Read(8), std::ios_base::failure); } BOOST_AUTO_TEST_CASE(streams_serializedata_xor) { std::vector in; // Degenerate case { DataStream ds{in}; ds.Xor({0x00, 0x00}); BOOST_CHECK_EQUAL(""s, ds.str()); } in.push_back(std::byte{0x0f}); in.push_back(std::byte{0xf0}); // Single character key { DataStream ds{in}; ds.Xor({0xff}); BOOST_CHECK_EQUAL("\xf0\x0f"s, ds.str()); } // Multi character key in.clear(); in.push_back(std::byte{0xf0}); in.push_back(std::byte{0x0f}); { DataStream ds{in}; ds.Xor({0xff, 0x0f}); BOOST_CHECK_EQUAL("\x0f\x00"s, ds.str()); } } BOOST_AUTO_TEST_CASE(streams_buffered_file) { fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; FILE* file = fsbridge::fopen(streams_test_filename, "w+b"); // The value at each offset is the offset. for (uint8_t j = 0; j < 40; ++j) { fwrite(&j, 1, 1, file); } rewind(file); // The buffer size (second arg) must be greater than the rewind // amount (third arg). try { CBufferedFile bfbad(file, 25, 25, 222, 333); BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Rewind limit must be less than buffer size") != nullptr); } // The buffer is 25 bytes, allow rewinding 10 bytes. CBufferedFile bf(file, 25, 10, 222, 333); BOOST_CHECK(!bf.eof()); // These two members have no functional effect. BOOST_CHECK_EQUAL(bf.GetType(), 222); BOOST_CHECK_EQUAL(bf.GetVersion(), 333); uint8_t i; bf >> i; BOOST_CHECK_EQUAL(i, 0); bf >> i; BOOST_CHECK_EQUAL(i, 1); // After reading bytes 0 and 1, we're positioned at 2. BOOST_CHECK_EQUAL(bf.GetPos(), 2U); // Rewind to offset 0, ok (within the 10 byte window). BOOST_CHECK(bf.SetPos(0)); bf >> i; BOOST_CHECK_EQUAL(i, 0); // We can go forward to where we've been, but beyond may fail. BOOST_CHECK(bf.SetPos(2)); bf >> i; BOOST_CHECK_EQUAL(i, 2); // If you know the maximum number of bytes that should be // read to deserialize the variable, you can limit the read // extent. The current file offset is 3, so the following // SetLimit() allows zero bytes to be read. BOOST_CHECK(bf.SetLimit(3)); try { bf >> i; BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Attempt to position past buffer limit") != nullptr); } // The default argument removes the limit completely. BOOST_CHECK(bf.SetLimit()); // The read position should still be at 3 (no change). BOOST_CHECK_EQUAL(bf.GetPos(), 3U); // Read from current offset, 3, forward until position 10. for (uint8_t j = 3; j < 10; ++j) { bf >> i; BOOST_CHECK_EQUAL(i, j); } BOOST_CHECK_EQUAL(bf.GetPos(), 10U); // We're guaranteed (just barely) to be able to rewind to zero. BOOST_CHECK(bf.SetPos(0)); BOOST_CHECK_EQUAL(bf.GetPos(), 0U); bf >> i; BOOST_CHECK_EQUAL(i, 0); // We can set the position forward again up to the farthest // into the stream we've been, but no farther. (Attempting // to go farther may succeed, but it's not guaranteed.) BOOST_CHECK(bf.SetPos(10)); bf >> i; BOOST_CHECK_EQUAL(i, 10); BOOST_CHECK_EQUAL(bf.GetPos(), 11U); // Now it's only guaranteed that we can rewind to offset 1 // (current read position, 11, minus rewind amount, 10). BOOST_CHECK(bf.SetPos(1)); BOOST_CHECK_EQUAL(bf.GetPos(), 1U); bf >> i; BOOST_CHECK_EQUAL(i, 1); // We can stream into large variables, even larger than // the buffer size. BOOST_CHECK(bf.SetPos(11)); { uint8_t a[40 - 11]; bf >> a; for (uint8_t j = 0; j < sizeof(a); ++j) { BOOST_CHECK_EQUAL(a[j], 11 + j); } } BOOST_CHECK_EQUAL(bf.GetPos(), 40U); // We've read the entire file, the next read should throw. try { bf >> i; BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "CBufferedFile::Fill: end of file") != nullptr); } // Attempting to read beyond the end sets the EOF indicator. BOOST_CHECK(bf.eof()); // Still at offset 40, we can go back 10, to 30. BOOST_CHECK_EQUAL(bf.GetPos(), 40U); BOOST_CHECK(bf.SetPos(30)); bf >> i; BOOST_CHECK_EQUAL(i, 30); BOOST_CHECK_EQUAL(bf.GetPos(), 31U); // We're too far to rewind to position zero. BOOST_CHECK(!bf.SetPos(0)); // But we should now be positioned at least as far back as allowed // by the rewind window (relative to our farthest read position, 40). BOOST_CHECK(bf.GetPos() <= 30U); // We can explicitly close the file, or the destructor will do it. bf.fclose(); fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(streams_buffered_file_skip) { fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; FILE* file = fsbridge::fopen(streams_test_filename, "w+b"); // The value at each offset is the byte offset (e.g. byte 1 in the file has the value 0x01). for (uint8_t j = 0; j < 40; ++j) { fwrite(&j, 1, 1, file); } rewind(file); // The buffer is 25 bytes, allow rewinding 10 bytes. CBufferedFile bf(file, 25, 10, 222, 333); uint8_t i; // This is like bf >> (7-byte-variable), in that it will cause data // to be read from the file into memory, but it's not copied to us. bf.SkipTo(7); BOOST_CHECK_EQUAL(bf.GetPos(), 7U); bf >> i; BOOST_CHECK_EQUAL(i, 7); // The bytes in the buffer up to offset 7 are valid and can be read. BOOST_CHECK(bf.SetPos(0)); bf >> i; BOOST_CHECK_EQUAL(i, 0); bf >> i; BOOST_CHECK_EQUAL(i, 1); bf.SkipTo(11); bf >> i; BOOST_CHECK_EQUAL(i, 11); // SkipTo() honors the transfer limit; we can't position beyond the limit. bf.SetLimit(13); try { bf.SkipTo(14); BOOST_CHECK(false); } catch (const std::exception& e) { BOOST_CHECK(strstr(e.what(), "Attempt to position past buffer limit") != nullptr); } // We can position exactly to the transfer limit. bf.SkipTo(13); BOOST_CHECK_EQUAL(bf.GetPos(), 13U); bf.fclose(); fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(streams_buffered_file_rand) { // Make this test deterministic. SeedInsecureRand(SeedRand::ZEROS); fs::path streams_test_filename = m_args.GetDataDirBase() / "streams_test_tmp"; for (int rep = 0; rep < 50; ++rep) { FILE* file = fsbridge::fopen(streams_test_filename, "w+b"); size_t fileSize = InsecureRandRange(256); for (uint8_t i = 0; i < fileSize; ++i) { fwrite(&i, 1, 1, file); } rewind(file); size_t bufSize = InsecureRandRange(300) + 1; size_t rewindSize = InsecureRandRange(bufSize); CBufferedFile bf(file, bufSize, rewindSize, 222, 333); size_t currentPos = 0; size_t maxPos = 0; for (int step = 0; step < 100; ++step) { if (currentPos >= fileSize) break; // We haven't read to the end of the file yet. BOOST_CHECK(!bf.eof()); BOOST_CHECK_EQUAL(bf.GetPos(), currentPos); // Pretend the file consists of a series of objects of varying // sizes; the boundaries of the objects can interact arbitrarily // with the CBufferFile's internal buffer. These first three // cases simulate objects of various sizes (1, 2, 5 bytes). switch (InsecureRandRange(6)) { case 0: { uint8_t a[1]; if (currentPos + 1 > fileSize) continue; bf.SetLimit(currentPos + 1); bf >> a; for (uint8_t i = 0; i < 1; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 1: { uint8_t a[2]; if (currentPos + 2 > fileSize) continue; bf.SetLimit(currentPos + 2); bf >> a; for (uint8_t i = 0; i < 2; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 2: { uint8_t a[5]; if (currentPos + 5 > fileSize) continue; bf.SetLimit(currentPos + 5); bf >> a; for (uint8_t i = 0; i < 5; ++i) { BOOST_CHECK_EQUAL(a[i], currentPos); currentPos++; } break; } case 3: { // SkipTo is similar to the "read" cases above, except // we don't receive the data. size_t skip_length{static_cast(InsecureRandRange(5))}; if (currentPos + skip_length > fileSize) continue; bf.SetLimit(currentPos + skip_length); bf.SkipTo(currentPos + skip_length); currentPos += skip_length; break; } case 4: { // Find a byte value (that is at or ahead of the current position). size_t find = currentPos + InsecureRandRange(8); if (find >= fileSize) find = fileSize - 1; bf.FindByte(uint8_t(find)); // The value at each offset is the offset. BOOST_CHECK_EQUAL(bf.GetPos(), find); currentPos = find; bf.SetLimit(currentPos + 1); uint8_t i; bf >> i; BOOST_CHECK_EQUAL(i, currentPos); currentPos++; break; } case 5: { size_t requestPos = InsecureRandRange(maxPos + 4); bool okay = bf.SetPos(requestPos); // The new position may differ from the requested position // because we may not be able to rewind beyond the rewind // window, and we may not be able to move forward beyond the // farthest position we've reached so far. currentPos = bf.GetPos(); BOOST_CHECK_EQUAL(okay, currentPos == requestPos); // Check that we can position within the rewind window. if (requestPos <= maxPos && maxPos > rewindSize && requestPos >= maxPos - rewindSize) { // We requested a position within the rewind window. BOOST_CHECK(okay); } break; } } if (maxPos < currentPos) maxPos = currentPos; } } fs::remove(streams_test_filename); } BOOST_AUTO_TEST_CASE(streams_hashed) { CDataStream stream(SER_NETWORK, INIT_PROTO_VERSION); HashedSourceWriter hash_writer{stream}; const std::string data{"bitcoin"}; hash_writer << data; CHashVerifier hash_verifier{&stream}; std::string result; hash_verifier >> result; BOOST_CHECK_EQUAL(data, result); BOOST_CHECK_EQUAL(hash_writer.GetHash(), hash_verifier.GetHash()); } BOOST_AUTO_TEST_SUITE_END()