// Copyright (c) 2012-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std::literals; BOOST_FIXTURE_TEST_SUITE(net_tests, RegTestingSetup) BOOST_AUTO_TEST_CASE(cnode_listen_port) { // test default uint16_t port{GetListenPort()}; BOOST_CHECK(port == Params().GetDefaultPort()); // test set port uint16_t altPort = 12345; BOOST_CHECK(gArgs.SoftSetArg("-port", ToString(altPort))); port = GetListenPort(); BOOST_CHECK(port == altPort); } BOOST_AUTO_TEST_CASE(cnode_simple_test) { NodeId id = 0; in_addr ipv4Addr; ipv4Addr.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4Addr, 7777), NODE_NETWORK); std::string pszDest; std::unique_ptr pnode1 = std::make_unique(id++, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false); BOOST_CHECK(pnode1->IsFullOutboundConn() == true); BOOST_CHECK(pnode1->IsManualConn() == false); BOOST_CHECK(pnode1->IsBlockOnlyConn() == false); BOOST_CHECK(pnode1->IsFeelerConn() == false); BOOST_CHECK(pnode1->IsAddrFetchConn() == false); BOOST_CHECK(pnode1->IsInboundConn() == false); BOOST_CHECK(pnode1->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode1->ConnectedThroughNetwork(), Network::NET_IPV4); std::unique_ptr pnode2 = std::make_unique(id++, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/1, /*nLocalHostNonceIn=*/1, CAddress(), pszDest, ConnectionType::INBOUND, /*inbound_onion=*/false); BOOST_CHECK(pnode2->IsFullOutboundConn() == false); BOOST_CHECK(pnode2->IsManualConn() == false); BOOST_CHECK(pnode2->IsBlockOnlyConn() == false); BOOST_CHECK(pnode2->IsFeelerConn() == false); BOOST_CHECK(pnode2->IsAddrFetchConn() == false); BOOST_CHECK(pnode2->IsInboundConn() == true); BOOST_CHECK(pnode2->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode2->ConnectedThroughNetwork(), Network::NET_IPV4); std::unique_ptr pnode3 = std::make_unique(id++, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false); BOOST_CHECK(pnode3->IsFullOutboundConn() == true); BOOST_CHECK(pnode3->IsManualConn() == false); BOOST_CHECK(pnode3->IsBlockOnlyConn() == false); BOOST_CHECK(pnode3->IsFeelerConn() == false); BOOST_CHECK(pnode3->IsAddrFetchConn() == false); BOOST_CHECK(pnode3->IsInboundConn() == false); BOOST_CHECK(pnode3->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode3->ConnectedThroughNetwork(), Network::NET_IPV4); std::unique_ptr pnode4 = std::make_unique(id++, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/1, /*nLocalHostNonceIn=*/1, CAddress(), pszDest, ConnectionType::INBOUND, /*inbound_onion=*/true); BOOST_CHECK(pnode4->IsFullOutboundConn() == false); BOOST_CHECK(pnode4->IsManualConn() == false); BOOST_CHECK(pnode4->IsBlockOnlyConn() == false); BOOST_CHECK(pnode4->IsFeelerConn() == false); BOOST_CHECK(pnode4->IsAddrFetchConn() == false); BOOST_CHECK(pnode4->IsInboundConn() == true); BOOST_CHECK(pnode4->m_inbound_onion == true); BOOST_CHECK_EQUAL(pnode4->ConnectedThroughNetwork(), Network::NET_ONION); } BOOST_AUTO_TEST_CASE(cnetaddr_basic) { CNetAddr addr; // IPv4, INADDR_ANY addr = LookupHost("0.0.0.0", false).value(); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "0.0.0.0"); // IPv4, INADDR_NONE addr = LookupHost("255.255.255.255", false).value(); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "255.255.255.255"); // IPv4, casual addr = LookupHost("12.34.56.78", false).value(); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "12.34.56.78"); // IPv6, in6addr_any addr = LookupHost("::", false).value(); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "::"); // IPv6, casual addr = LookupHost("1122:3344:5566:7788:9900:aabb:ccdd:eeff", false).value(); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "1122:3344:5566:7788:9900:aabb:ccdd:eeff"); // IPv6, scoped/link-local. See https://tools.ietf.org/html/rfc4007 // We support non-negative decimal integers (uint32_t) as zone id indices. // Normal link-local scoped address functionality is to append "%" plus the // zone id, for example, given a link-local address of "fe80::1" and a zone // id of "32", return the address as "fe80::1%32". const std::string link_local{"fe80::1"}; const std::string scoped_addr{link_local + "%32"}; addr = LookupHost(scoped_addr, false).value(); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), scoped_addr); // Test that the delimiter "%" and default zone id of 0 can be omitted for the default scope. addr = LookupHost(link_local + "%0", false).value(); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), link_local); // TORv2, no longer supported BOOST_CHECK(!addr.SetSpecial("6hzph5hv6337r6p2.onion")); // TORv3 const char* torv3_addr = "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"; BOOST_REQUIRE(addr.SetSpecial(torv3_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsTor()); BOOST_CHECK(!addr.IsI2P()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), torv3_addr); // TORv3, broken, with wrong checksum BOOST_CHECK(!addr.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.onion")); // TORv3, broken, with wrong version BOOST_CHECK(!addr.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscrye.onion")); // TORv3, malicious BOOST_CHECK(!addr.SetSpecial(std::string{ "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd\0wtf.onion", 66})); // TOR, bogus length BOOST_CHECK(!addr.SetSpecial(std::string{"mfrggzak.onion"})); // TOR, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"mf*g zak.onion"})); // I2P const char* i2p_addr = "UDHDrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.I2P"; BOOST_REQUIRE(addr.SetSpecial(i2p_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsI2P()); BOOST_CHECK(!addr.IsTor()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), ToLower(i2p_addr)); // I2P, correct length, but decodes to less than the expected number of bytes. BOOST_CHECK(!addr.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jn=.b32.i2p")); // I2P, extra unnecessary padding BOOST_CHECK(!addr.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna=.b32.i2p")); // I2P, malicious BOOST_CHECK(!addr.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v\0wtf.b32.i2p"s)); // I2P, valid but unsupported (56 Base32 characters) // See "Encrypted LS with Base 32 Addresses" in // https://geti2p.net/spec/encryptedleaseset.txt BOOST_CHECK( !addr.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.b32.i2p")); // I2P, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"tp*szydbh4dp.b32.i2p"})); // Internal addr.SetInternal("esffpp"); BOOST_REQUIRE(!addr.IsValid()); // "internal" is considered invalid BOOST_REQUIRE(addr.IsInternal()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "esffpvrt3wpeaygy.internal"); // Totally bogus BOOST_CHECK(!addr.SetSpecial("totally bogus")); } BOOST_AUTO_TEST_CASE(cnetaddr_tostring_canonical_ipv6) { // Test that CNetAddr::ToString formats IPv6 addresses with zero compression as described in // RFC 5952 ("A Recommendation for IPv6 Address Text Representation"). const std::map canonical_representations_ipv6{ {"0000:0000:0000:0000:0000:0000:0000:0000", "::"}, {"000:0000:000:00:0:00:000:0000", "::"}, {"000:000:000:000:000:000:000:000", "::"}, {"00:00:00:00:00:00:00:00", "::"}, {"0:0:0:0:0:0:0:0", "::"}, {"0:0:0:0:0:0:0:1", "::1"}, {"2001:0:0:1:0:0:0:1", "2001:0:0:1::1"}, {"2001:0db8:0:0:1:0:0:1", "2001:db8::1:0:0:1"}, {"2001:0db8:85a3:0000:0000:8a2e:0370:7334", "2001:db8:85a3::8a2e:370:7334"}, {"2001:0db8::0001", "2001:db8::1"}, {"2001:0db8::0001:0000", "2001:db8::1:0"}, {"2001:0db8::1:0:0:1", "2001:db8::1:0:0:1"}, {"2001:db8:0000:0:1::1", "2001:db8::1:0:0:1"}, {"2001:db8:0000:1:1:1:1:1", "2001:db8:0:1:1:1:1:1"}, {"2001:db8:0:0:0:0:2:1", "2001:db8::2:1"}, {"2001:db8:0:0:0::1", "2001:db8::1"}, {"2001:db8:0:0:1:0:0:1", "2001:db8::1:0:0:1"}, {"2001:db8:0:0:1::1", "2001:db8::1:0:0:1"}, {"2001:DB8:0:0:1::1", "2001:db8::1:0:0:1"}, {"2001:db8:0:0::1", "2001:db8::1"}, {"2001:db8:0:0:aaaa::1", "2001:db8::aaaa:0:0:1"}, {"2001:db8:0:1:1:1:1:1", "2001:db8:0:1:1:1:1:1"}, {"2001:db8:0::1", "2001:db8::1"}, {"2001:db8:85a3:0:0:8a2e:370:7334", "2001:db8:85a3::8a2e:370:7334"}, {"2001:db8::0:1", "2001:db8::1"}, {"2001:db8::0:1:0:0:1", "2001:db8::1:0:0:1"}, {"2001:DB8::1", "2001:db8::1"}, {"2001:db8::1", "2001:db8::1"}, {"2001:db8::1:0:0:1", "2001:db8::1:0:0:1"}, {"2001:db8::1:1:1:1:1", "2001:db8:0:1:1:1:1:1"}, {"2001:db8::aaaa:0:0:1", "2001:db8::aaaa:0:0:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:0:1", "2001:db8:aaaa:bbbb:cccc:dddd:0:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd::1", "2001:db8:aaaa:bbbb:cccc:dddd:0:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:0001", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:001", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:01", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:1", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:1"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:aaaa", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:aaaa"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:AAAA", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:aaaa"}, {"2001:db8:aaaa:bbbb:cccc:dddd:eeee:AaAa", "2001:db8:aaaa:bbbb:cccc:dddd:eeee:aaaa"}, }; for (const auto& [input_address, expected_canonical_representation_output] : canonical_representations_ipv6) { const std::optional net_addr{LookupHost(input_address, false)}; BOOST_REQUIRE(net_addr.value().IsIPv6()); BOOST_CHECK_EQUAL(net_addr.value().ToStringAddr(), expected_canonical_representation_output); } } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v1) { CNetAddr addr; DataStream s{}; const auto ser_params{CAddress::V1_NETWORK}; s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); addr = LookupHost("1.2.3.4", false).value(); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000ffff01020304"); s.clear(); addr = LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", false).value(); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "1a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); // TORv2, no longer supported BOOST_CHECK(!addr.SetSpecial("6hzph5hv6337r6p2.onion")); BOOST_REQUIRE(addr.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion")); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); addr.SetInternal("a"); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v2) { CNetAddr addr; DataStream s{}; const auto ser_params{CAddress::V2_NETWORK}; s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "021000000000000000000000000000000000"); s.clear(); addr = LookupHost("1.2.3.4", false).value(); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "010401020304"); s.clear(); addr = LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", false).value(); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "02101a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); // TORv2, no longer supported BOOST_CHECK(!addr.SetSpecial("6hzph5hv6337r6p2.onion")); BOOST_REQUIRE(addr.SetSpecial("kpgvmscirrdqpekbqjsvw5teanhatztpp2gl6eee4zkowvwfxwenqaid.onion")); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "042053cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88"); s.clear(); BOOST_REQUIRE(addr.SetInternal("a")); s << ser_params(addr); BOOST_CHECK_EQUAL(HexStr(s), "0210fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_unserialize_v2) { CNetAddr addr; DataStream s{}; const auto ser_params{CAddress::V2_NETWORK}; // Valid IPv4. s << Span{ParseHex("01" // network type (IPv4) "04" // address length "01020304")}; // address s >> ser_params(addr); BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv4()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "1.2.3.4"); BOOST_REQUIRE(s.empty()); // Invalid IPv4, valid length but address itself is shorter. s << Span{ParseHex("01" // network type (IPv4) "04" // address length "0102")}; // address BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("end of data")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with bogus length. s << Span{ParseHex("01" // network type (IPv4) "05" // address length "01020304")}; // address BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("BIP155 IPv4 address with length 5 (should be 4)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with extreme length. s << Span{ParseHex("01" // network type (IPv4) "fd0102" // address length (513 as CompactSize) "01020304")}; // address BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("Address too long: 513 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid IPv6. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "0102030405060708090a0b0c0d0e0f10")}; // address s >> ser_params(addr); BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv6()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "102:304:506:708:90a:b0c:d0e:f10"); BOOST_REQUIRE(s.empty()); // Valid IPv6, contains embedded "internal". s << Span{ParseHex( "02" // network type (IPv6) "10" // address length "fd6b88c08724ca978112ca1bbdcafac2")}; // address: 0xfd + sha256("bitcoin")[0:5] + // sha256(name)[0:10] s >> ser_params(addr); BOOST_CHECK(addr.IsInternal()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "zklycewkdo64v6wc.internal"); BOOST_REQUIRE(s.empty()); // Invalid IPv6, with bogus length. s << Span{ParseHex("02" // network type (IPv6) "04" // address length "00")}; // address BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("BIP155 IPv6 address with length 4 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv6, contains embedded IPv4. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "00000000000000000000ffff01020304")}; // address s >> ser_params(addr); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Invalid IPv6, contains embedded TORv2. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "fd87d87eeb430102030405060708090a")}; // address s >> ser_params(addr); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // TORv2, no longer supported. s << Span{ParseHex("03" // network type (TORv2) "0a" // address length "f1f2f3f4f5f6f7f8f9fa")}; // address s >> ser_params(addr); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Valid TORv3. s << Span{ParseHex("04" // network type (TORv3) "20" // address length "79bcc625184b05194975c28b66b66b04" // address "69f7f6556fb1ac3189a79b40dda32f1f" )}; s >> ser_params(addr); BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsTor()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"); BOOST_REQUIRE(s.empty()); // Invalid TORv3, with bogus length. s << Span{ParseHex("04" // network type (TORv3) "00" // address length "00" // address )}; BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("BIP155 TORv3 address with length 0 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid I2P. s << Span{ParseHex("05" // network type (I2P) "20" // address length "a2894dabaec08c0051a481a6dac88b64" // address "f98232ae42d4b6fd2fa81952dfe36a87")}; s >> ser_params(addr); BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsI2P()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "ukeu3k5oycgaauneqgtnvselmt4yemvoilkln7jpvamvfx7dnkdq.b32.i2p"); BOOST_REQUIRE(s.empty()); // Invalid I2P, with bogus length. s << Span{ParseHex("05" // network type (I2P) "03" // address length "00" // address )}; BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("BIP155 I2P address with length 3 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid CJDNS. s << Span{ParseHex("06" // network type (CJDNS) "10" // address length "fc000001000200030004000500060007" // address )}; s >> ser_params(addr); BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsCJDNS()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToStringAddr(), "fc00:1:2:3:4:5:6:7"); BOOST_REQUIRE(s.empty()); // Invalid CJDNS, wrong prefix. s << Span{ParseHex("06" // network type (CJDNS) "10" // address length "aa000001000200030004000500060007" // address )}; s >> ser_params(addr); BOOST_CHECK(addr.IsCJDNS()); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Invalid CJDNS, with bogus length. s << Span{ParseHex("06" // network type (CJDNS) "01" // address length "00" // address )}; BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("BIP155 CJDNS address with length 1 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with extreme length. s << Span{ParseHex("aa" // network type (unknown) "fe00000002" // address length (CompactSize's MAX_SIZE) "01020304050607" // address )}; BOOST_CHECK_EXCEPTION(s >> ser_params(addr), std::ios_base::failure, HasReason("Address too long: 33554432 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with reasonable length. s << Span{ParseHex("aa" // network type (unknown) "04" // address length "01020304" // address )}; s >> ser_params(addr); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Unknown, with zero length. s << Span{ParseHex("aa" // network type (unknown) "00" // address length "" // address )}; s >> ser_params(addr); BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); } // prior to PR #14728, this test triggers an undefined behavior BOOST_AUTO_TEST_CASE(ipv4_peer_with_ipv6_addrMe_test) { // set up local addresses; all that's necessary to reproduce the bug is // that a normal IPv4 address is among the entries, but if this address is // !IsRoutable the undefined behavior is easier to trigger deterministically in_addr raw_addr; raw_addr.s_addr = htonl(0x7f000001); const CNetAddr mapLocalHost_entry = CNetAddr(raw_addr); { LOCK(g_maplocalhost_mutex); LocalServiceInfo lsi; lsi.nScore = 23; lsi.nPort = 42; mapLocalHost[mapLocalHost_entry] = lsi; } // create a peer with an IPv4 address in_addr ipv4AddrPeer; ipv4AddrPeer.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4AddrPeer, 7777), NODE_NETWORK); std::unique_ptr pnode = std::make_unique(/*id=*/0, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, CAddress{}, /*pszDest=*/std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false); pnode->fSuccessfullyConnected.store(true); // the peer claims to be reaching us via IPv6 in6_addr ipv6AddrLocal; memset(ipv6AddrLocal.s6_addr, 0, 16); ipv6AddrLocal.s6_addr[0] = 0xcc; CAddress addrLocal = CAddress(CService(ipv6AddrLocal, 7777), NODE_NETWORK); pnode->SetAddrLocal(addrLocal); // before patch, this causes undefined behavior detectable with clang's -fsanitize=memory GetLocalAddrForPeer(*pnode); // suppress no-checks-run warning; if this test fails, it's by triggering a sanitizer BOOST_CHECK(1); // Cleanup, so that we don't confuse other tests. { LOCK(g_maplocalhost_mutex); mapLocalHost.erase(mapLocalHost_entry); } } BOOST_AUTO_TEST_CASE(get_local_addr_for_peer_port) { // Test that GetLocalAddrForPeer() properly selects the address to self-advertise: // // 1. GetLocalAddrForPeer() calls GetLocalAddress() which returns an address that is // not routable. // 2. GetLocalAddrForPeer() overrides the address with whatever the peer has told us // he sees us as. // 2.1. For inbound connections we must override both the address and the port. // 2.2. For outbound connections we must override only the address. // Pretend that we bound to this port. const uint16_t bind_port = 20001; m_node.args->ForceSetArg("-bind", strprintf("3.4.5.6:%u", bind_port)); // Our address:port as seen from the peer, completely different from the above. in_addr peer_us_addr; peer_us_addr.s_addr = htonl(0x02030405); const CService peer_us{peer_us_addr, 20002}; // Create a peer with a routable IPv4 address (outbound). in_addr peer_out_in_addr; peer_out_in_addr.s_addr = htonl(0x01020304); CNode peer_out{/*id=*/0, /*sock=*/nullptr, /*addrIn=*/CAddress{CService{peer_out_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false}; peer_out.fSuccessfullyConnected = true; peer_out.SetAddrLocal(peer_us); // Without the fix peer_us:8333 is chosen instead of the proper peer_us:bind_port. auto chosen_local_addr = GetLocalAddrForPeer(peer_out); BOOST_REQUIRE(chosen_local_addr); const CService expected{peer_us_addr, bind_port}; BOOST_CHECK(*chosen_local_addr == expected); // Create a peer with a routable IPv4 address (inbound). in_addr peer_in_in_addr; peer_in_in_addr.s_addr = htonl(0x05060708); CNode peer_in{/*id=*/0, /*sock=*/nullptr, /*addrIn=*/CAddress{CService{peer_in_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::INBOUND, /*inbound_onion=*/false}; peer_in.fSuccessfullyConnected = true; peer_in.SetAddrLocal(peer_us); // Without the fix peer_us:8333 is chosen instead of the proper peer_us:peer_us.GetPort(). chosen_local_addr = GetLocalAddrForPeer(peer_in); BOOST_REQUIRE(chosen_local_addr); BOOST_CHECK(*chosen_local_addr == peer_us); m_node.args->ForceSetArg("-bind", ""); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_Network) { BOOST_CHECK(g_reachable_nets.Contains(NET_IPV4)); BOOST_CHECK(g_reachable_nets.Contains(NET_IPV6)); BOOST_CHECK(g_reachable_nets.Contains(NET_ONION)); BOOST_CHECK(g_reachable_nets.Contains(NET_I2P)); BOOST_CHECK(g_reachable_nets.Contains(NET_CJDNS)); g_reachable_nets.Remove(NET_IPV4); g_reachable_nets.Remove(NET_IPV6); g_reachable_nets.Remove(NET_ONION); g_reachable_nets.Remove(NET_I2P); g_reachable_nets.Remove(NET_CJDNS); BOOST_CHECK(!g_reachable_nets.Contains(NET_IPV4)); BOOST_CHECK(!g_reachable_nets.Contains(NET_IPV6)); BOOST_CHECK(!g_reachable_nets.Contains(NET_ONION)); BOOST_CHECK(!g_reachable_nets.Contains(NET_I2P)); BOOST_CHECK(!g_reachable_nets.Contains(NET_CJDNS)); g_reachable_nets.Add(NET_IPV4); g_reachable_nets.Add(NET_IPV6); g_reachable_nets.Add(NET_ONION); g_reachable_nets.Add(NET_I2P); g_reachable_nets.Add(NET_CJDNS); BOOST_CHECK(g_reachable_nets.Contains(NET_IPV4)); BOOST_CHECK(g_reachable_nets.Contains(NET_IPV6)); BOOST_CHECK(g_reachable_nets.Contains(NET_ONION)); BOOST_CHECK(g_reachable_nets.Contains(NET_I2P)); BOOST_CHECK(g_reachable_nets.Contains(NET_CJDNS)); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_NetworkCaseUnroutableAndInternal) { // Should be reachable by default. BOOST_CHECK(g_reachable_nets.Contains(NET_UNROUTABLE)); BOOST_CHECK(g_reachable_nets.Contains(NET_INTERNAL)); g_reachable_nets.RemoveAll(); BOOST_CHECK(!g_reachable_nets.Contains(NET_UNROUTABLE)); BOOST_CHECK(!g_reachable_nets.Contains(NET_INTERNAL)); g_reachable_nets.Add(NET_IPV4); g_reachable_nets.Add(NET_IPV6); g_reachable_nets.Add(NET_ONION); g_reachable_nets.Add(NET_I2P); g_reachable_nets.Add(NET_CJDNS); g_reachable_nets.Add(NET_UNROUTABLE); g_reachable_nets.Add(NET_INTERNAL); } CNetAddr UtilBuildAddress(unsigned char p1, unsigned char p2, unsigned char p3, unsigned char p4) { unsigned char ip[] = {p1, p2, p3, p4}; struct sockaddr_in sa; memset(&sa, 0, sizeof(sockaddr_in)); // initialize the memory block memcpy(&(sa.sin_addr), &ip, sizeof(ip)); return CNetAddr(sa.sin_addr); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_CNetAddr) { CNetAddr addr = UtilBuildAddress(0x001, 0x001, 0x001, 0x001); // 1.1.1.1 g_reachable_nets.Add(NET_IPV4); BOOST_CHECK(g_reachable_nets.Contains(addr)); g_reachable_nets.Remove(NET_IPV4); BOOST_CHECK(!g_reachable_nets.Contains(addr)); g_reachable_nets.Add(NET_IPV4); // have to reset this, because this is stateful. } BOOST_AUTO_TEST_CASE(LocalAddress_BasicLifecycle) { CService addr = CService(UtilBuildAddress(0x002, 0x001, 0x001, 0x001), 1000); // 2.1.1.1:1000 g_reachable_nets.Add(NET_IPV4); BOOST_CHECK(!IsLocal(addr)); BOOST_CHECK(AddLocal(addr, 1000)); BOOST_CHECK(IsLocal(addr)); RemoveLocal(addr); BOOST_CHECK(!IsLocal(addr)); } BOOST_AUTO_TEST_CASE(initial_advertise_from_version_message) { LOCK(NetEventsInterface::g_msgproc_mutex); // Tests the following scenario: // * -bind=3.4.5.6:20001 is specified // * we make an outbound connection to a peer // * the peer reports he sees us as 2.3.4.5:20002 in the version message // (20002 is a random port assigned by our OS for the outgoing TCP connection, // we cannot accept connections to it) // * we should self-advertise to that peer as 2.3.4.5:20001 // Pretend that we bound to this port. const uint16_t bind_port = 20001; m_node.args->ForceSetArg("-bind", strprintf("3.4.5.6:%u", bind_port)); m_node.args->ForceSetArg("-capturemessages", "1"); // Our address:port as seen from the peer - 2.3.4.5:20002 (different from the above). in_addr peer_us_addr; peer_us_addr.s_addr = htonl(0x02030405); const CService peer_us{peer_us_addr, 20002}; // Create a peer with a routable IPv4 address. in_addr peer_in_addr; peer_in_addr.s_addr = htonl(0x01020304); CNode peer{/*id=*/0, /*sock=*/nullptr, /*addrIn=*/CAddress{CService{peer_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false}; const uint64_t services{NODE_NETWORK | NODE_WITNESS}; const int64_t time{0}; // Force ChainstateManager::IsInitialBlockDownload() to return false. // Otherwise PushAddress() isn't called by PeerManager::ProcessMessage(). auto& chainman = static_cast(*m_node.chainman); chainman.JumpOutOfIbd(); m_node.peerman->InitializeNode(peer, NODE_NETWORK); std::atomic interrupt_dummy{false}; std::chrono::microseconds time_received_dummy{0}; const auto msg_version = NetMsg::Make(NetMsgType::VERSION, PROTOCOL_VERSION, services, time, services, CAddress::V1_NETWORK(peer_us)); DataStream msg_version_stream{msg_version.data}; m_node.peerman->ProcessMessage( peer, NetMsgType::VERSION, msg_version_stream, time_received_dummy, interrupt_dummy); const auto msg_verack = NetMsg::Make(NetMsgType::VERACK); DataStream msg_verack_stream{msg_verack.data}; // Will set peer.fSuccessfullyConnected to true (necessary in SendMessages()). m_node.peerman->ProcessMessage( peer, NetMsgType::VERACK, msg_verack_stream, time_received_dummy, interrupt_dummy); // Ensure that peer_us_addr:bind_port is sent to the peer. const CService expected{peer_us_addr, bind_port}; bool sent{false}; const auto CaptureMessageOrig = CaptureMessage; CaptureMessage = [&sent, &expected](const CAddress& addr, const std::string& msg_type, Span data, bool is_incoming) -> void { if (!is_incoming && msg_type == "addr") { DataStream s{data}; std::vector addresses; s >> CAddress::V1_NETWORK(addresses); for (const auto& addr : addresses) { if (addr == expected) { sent = true; return; } } } }; m_node.peerman->SendMessages(&peer); BOOST_CHECK(sent); CaptureMessage = CaptureMessageOrig; chainman.ResetIbd(); m_node.args->ForceSetArg("-capturemessages", "0"); m_node.args->ForceSetArg("-bind", ""); } BOOST_AUTO_TEST_CASE(advertise_local_address) { auto CreatePeer = [](const CAddress& addr) { return std::make_unique(/*id=*/0, /*sock=*/nullptr, addr, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, CAddress{}, /*pszDest=*/std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false); }; g_reachable_nets.Add(NET_CJDNS); CAddress addr_ipv4{Lookup("1.2.3.4", 8333, false).value(), NODE_NONE}; BOOST_REQUIRE(addr_ipv4.IsValid()); BOOST_REQUIRE(addr_ipv4.IsIPv4()); CAddress addr_ipv6{Lookup("1122:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE}; BOOST_REQUIRE(addr_ipv6.IsValid()); BOOST_REQUIRE(addr_ipv6.IsIPv6()); CAddress addr_ipv6_tunnel{Lookup("2002:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE}; BOOST_REQUIRE(addr_ipv6_tunnel.IsValid()); BOOST_REQUIRE(addr_ipv6_tunnel.IsIPv6()); BOOST_REQUIRE(addr_ipv6_tunnel.IsRFC3964()); CAddress addr_teredo{Lookup("2001:0000:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE}; BOOST_REQUIRE(addr_teredo.IsValid()); BOOST_REQUIRE(addr_teredo.IsIPv6()); BOOST_REQUIRE(addr_teredo.IsRFC4380()); CAddress addr_onion; BOOST_REQUIRE(addr_onion.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion")); BOOST_REQUIRE(addr_onion.IsValid()); BOOST_REQUIRE(addr_onion.IsTor()); CAddress addr_i2p; BOOST_REQUIRE(addr_i2p.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.i2p")); BOOST_REQUIRE(addr_i2p.IsValid()); BOOST_REQUIRE(addr_i2p.IsI2P()); CService service_cjdns{Lookup("fc00:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE}; CAddress addr_cjdns{MaybeFlipIPv6toCJDNS(service_cjdns), NODE_NONE}; BOOST_REQUIRE(addr_cjdns.IsValid()); BOOST_REQUIRE(addr_cjdns.IsCJDNS()); const auto peer_ipv4{CreatePeer(addr_ipv4)}; const auto peer_ipv6{CreatePeer(addr_ipv6)}; const auto peer_ipv6_tunnel{CreatePeer(addr_ipv6_tunnel)}; const auto peer_teredo{CreatePeer(addr_teredo)}; const auto peer_onion{CreatePeer(addr_onion)}; const auto peer_i2p{CreatePeer(addr_i2p)}; const auto peer_cjdns{CreatePeer(addr_cjdns)}; // one local clearnet address - advertise to all but privacy peers AddLocal(addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_ipv4) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_ipv6) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_ipv6_tunnel) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_teredo) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_cjdns) == addr_ipv4); BOOST_CHECK(!GetLocalAddress(*peer_onion).IsValid()); BOOST_CHECK(!GetLocalAddress(*peer_i2p).IsValid()); RemoveLocal(addr_ipv4); // local privacy addresses - don't advertise to clearnet peers AddLocal(addr_onion); AddLocal(addr_i2p); BOOST_CHECK(!GetLocalAddress(*peer_ipv4).IsValid()); BOOST_CHECK(!GetLocalAddress(*peer_ipv6).IsValid()); BOOST_CHECK(!GetLocalAddress(*peer_ipv6_tunnel).IsValid()); BOOST_CHECK(!GetLocalAddress(*peer_teredo).IsValid()); BOOST_CHECK(!GetLocalAddress(*peer_cjdns).IsValid()); BOOST_CHECK(GetLocalAddress(*peer_onion) == addr_onion); BOOST_CHECK(GetLocalAddress(*peer_i2p) == addr_i2p); RemoveLocal(addr_onion); RemoveLocal(addr_i2p); // local addresses from all networks AddLocal(addr_ipv4); AddLocal(addr_ipv6); AddLocal(addr_ipv6_tunnel); AddLocal(addr_teredo); AddLocal(addr_onion); AddLocal(addr_i2p); AddLocal(addr_cjdns); BOOST_CHECK(GetLocalAddress(*peer_ipv4) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_ipv6) == addr_ipv6); BOOST_CHECK(GetLocalAddress(*peer_ipv6_tunnel) == addr_ipv6); BOOST_CHECK(GetLocalAddress(*peer_teredo) == addr_ipv4); BOOST_CHECK(GetLocalAddress(*peer_onion) == addr_onion); BOOST_CHECK(GetLocalAddress(*peer_i2p) == addr_i2p); BOOST_CHECK(GetLocalAddress(*peer_cjdns) == addr_cjdns); RemoveLocal(addr_ipv4); RemoveLocal(addr_ipv6); RemoveLocal(addr_ipv6_tunnel); RemoveLocal(addr_teredo); RemoveLocal(addr_onion); RemoveLocal(addr_i2p); RemoveLocal(addr_cjdns); } namespace { CKey GenerateRandomTestKey() noexcept { CKey key; uint256 key_data = InsecureRand256(); key.Set(key_data.begin(), key_data.end(), true); return key; } /** A class for scenario-based tests of V2Transport * * Each V2TransportTester encapsulates a V2Transport (the one being tested), and can be told to * interact with it. To do so, it also encapsulates a BIP324Cipher to act as the other side. A * second V2Transport is not used, as doing so would not permit scenarios that involve sending * invalid data, or ones using BIP324 features that are not implemented on the sending * side (like decoy packets). */ class V2TransportTester { V2Transport m_transport; //!< V2Transport being tested BIP324Cipher m_cipher; //!< Cipher to help with the other side bool m_test_initiator; //!< Whether m_transport is the initiator (true) or responder (false) std::vector m_sent_garbage; //!< The garbage we've sent to m_transport. std::vector m_recv_garbage; //!< The garbage we've received from m_transport. std::vector m_to_send; //!< Bytes we have queued up to send to m_transport. std::vector m_received; //!< Bytes we have received from m_transport. std::deque m_msg_to_send; //!< Messages to be sent *by* m_transport to us. bool m_sent_aad{false}; public: /** Construct a tester object. test_initiator: whether the tested transport is initiator. */ explicit V2TransportTester(bool test_initiator) : m_transport{0, test_initiator}, m_cipher{GenerateRandomTestKey(), MakeByteSpan(InsecureRand256())}, m_test_initiator(test_initiator) {} /** Data type returned by Interact: * * - std::nullopt: transport error occurred * - otherwise: a vector of * - std::nullopt: invalid message received * - otherwise: a CNetMessage retrieved */ using InteractResult = std::optional>>; /** Send/receive scheduled/available bytes and messages. * * This is the only function that interacts with the transport being tested; everything else is * scheduling things done by Interact(), or processing things learned by it. */ InteractResult Interact() { std::vector> ret; while (true) { bool progress{false}; // Send bytes from m_to_send to the transport. if (!m_to_send.empty()) { Span to_send = Span{m_to_send}.first(1 + InsecureRandRange(m_to_send.size())); size_t old_len = to_send.size(); if (!m_transport.ReceivedBytes(to_send)) { return std::nullopt; // transport error occurred } if (old_len != to_send.size()) { progress = true; m_to_send.erase(m_to_send.begin(), m_to_send.begin() + (old_len - to_send.size())); } } // Retrieve messages received by the transport. if (m_transport.ReceivedMessageComplete() && (!progress || InsecureRandBool())) { bool reject{false}; auto msg = m_transport.GetReceivedMessage({}, reject); if (reject) { ret.emplace_back(std::nullopt); } else { ret.emplace_back(std::move(msg)); } progress = true; } // Enqueue a message to be sent by the transport to us. if (!m_msg_to_send.empty() && (!progress || InsecureRandBool())) { if (m_transport.SetMessageToSend(m_msg_to_send.front())) { m_msg_to_send.pop_front(); progress = true; } } // Receive bytes from the transport. const auto& [recv_bytes, _more, _msg_type] = m_transport.GetBytesToSend(!m_msg_to_send.empty()); if (!recv_bytes.empty() && (!progress || InsecureRandBool())) { size_t to_receive = 1 + InsecureRandRange(recv_bytes.size()); m_received.insert(m_received.end(), recv_bytes.begin(), recv_bytes.begin() + to_receive); progress = true; m_transport.MarkBytesSent(to_receive); } if (!progress) break; } return ret; } /** Expose the cipher. */ BIP324Cipher& GetCipher() { return m_cipher; } /** Schedule bytes to be sent to the transport. */ void Send(Span data) { m_to_send.insert(m_to_send.end(), data.begin(), data.end()); } /** Send V1 version message header to the transport. */ void SendV1Version(const MessageStartChars& magic) { CMessageHeader hdr(magic, "version", 126 + InsecureRandRange(11)); DataStream ser{}; ser << hdr; m_to_send.insert(m_to_send.end(), UCharCast(ser.data()), UCharCast(ser.data() + ser.size())); } /** Schedule bytes to be sent to the transport. */ void Send(Span data) { Send(MakeUCharSpan(data)); } /** Schedule our ellswift key to be sent to the transport. */ void SendKey() { Send(m_cipher.GetOurPubKey()); } /** Schedule specified garbage to be sent to the transport. */ void SendGarbage(Span garbage) { // Remember the specified garbage (so we can use it as AAD). m_sent_garbage.assign(garbage.begin(), garbage.end()); // Schedule it for sending. Send(m_sent_garbage); } /** Schedule garbage (of specified length) to be sent to the transport. */ void SendGarbage(size_t garbage_len) { // Generate random garbage and send it. SendGarbage(g_insecure_rand_ctx.randbytes(garbage_len)); } /** Schedule garbage (with valid random length) to be sent to the transport. */ void SendGarbage() { SendGarbage(InsecureRandRange(V2Transport::MAX_GARBAGE_LEN + 1)); } /** Schedule a message to be sent to us by the transport. */ void AddMessage(std::string m_type, std::vector payload) { CSerializedNetMsg msg; msg.m_type = std::move(m_type); msg.data = std::move(payload); m_msg_to_send.push_back(std::move(msg)); } /** Expect ellswift key to have been received from transport and process it. * * Many other V2TransportTester functions cannot be called until after ReceiveKey() has been * called, as no encryption keys are set up before that point. */ void ReceiveKey() { // When processing a key, enough bytes need to have been received already. BOOST_REQUIRE(m_received.size() >= EllSwiftPubKey::size()); // Initialize the cipher using it (acting as the opposite side of the tested transport). m_cipher.Initialize(MakeByteSpan(m_received).first(EllSwiftPubKey::size()), !m_test_initiator); // Strip the processed bytes off the front of the receive buffer. m_received.erase(m_received.begin(), m_received.begin() + EllSwiftPubKey::size()); } /** Schedule an encrypted packet with specified content/aad/ignore to be sent to transport * (only after ReceiveKey). */ void SendPacket(Span content, Span aad = {}, bool ignore = false) { // Use cipher to construct ciphertext. std::vector ciphertext; ciphertext.resize(content.size() + BIP324Cipher::EXPANSION); m_cipher.Encrypt( /*contents=*/MakeByteSpan(content), /*aad=*/MakeByteSpan(aad), /*ignore=*/ignore, /*output=*/ciphertext); // Schedule it for sending. Send(ciphertext); } /** Schedule garbage terminator to be sent to the transport (only after ReceiveKey). */ void SendGarbageTerm() { // Schedule the garbage terminator to be sent. Send(m_cipher.GetSendGarbageTerminator()); } /** Schedule version packet to be sent to the transport (only after ReceiveKey). */ void SendVersion(Span version_data = {}, bool vers_ignore = false) { Span aad; // Set AAD to garbage only for first packet. if (!m_sent_aad) aad = m_sent_garbage; SendPacket(/*content=*/version_data, /*aad=*/aad, /*ignore=*/vers_ignore); m_sent_aad = true; } /** Expect a packet to have been received from transport, process it, and return its contents * (only after ReceiveKey). Decoys are skipped. Optional associated authenticated data (AAD) is * expected in the first received packet, no matter if that is a decoy or not. */ std::vector ReceivePacket(Span aad = {}) { std::vector contents; // Loop as long as there are ignored packets that are to be skipped. while (true) { // When processing a packet, at least enough bytes for its length descriptor must be received. BOOST_REQUIRE(m_received.size() >= BIP324Cipher::LENGTH_LEN); // Decrypt the content length. size_t size = m_cipher.DecryptLength(MakeByteSpan(Span{m_received}.first(BIP324Cipher::LENGTH_LEN))); // Check that the full packet is in the receive buffer. BOOST_REQUIRE(m_received.size() >= size + BIP324Cipher::EXPANSION); // Decrypt the packet contents. contents.resize(size); bool ignore{false}; bool ret = m_cipher.Decrypt( /*input=*/MakeByteSpan( Span{m_received}.first(size + BIP324Cipher::EXPANSION).subspan(BIP324Cipher::LENGTH_LEN)), /*aad=*/aad, /*ignore=*/ignore, /*contents=*/MakeWritableByteSpan(contents)); BOOST_CHECK(ret); // Don't expect AAD in further packets. aad = {}; // Strip the processed packet's bytes off the front of the receive buffer. m_received.erase(m_received.begin(), m_received.begin() + size + BIP324Cipher::EXPANSION); // Stop if the ignore bit is not set on this packet. if (!ignore) break; } return contents; } /** Expect garbage and garbage terminator to have been received, and process them (only after * ReceiveKey). */ void ReceiveGarbage() { // Figure out the garbage length. size_t garblen; for (garblen = 0; garblen <= V2Transport::MAX_GARBAGE_LEN; ++garblen) { BOOST_REQUIRE(m_received.size() >= garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN); auto term_span = MakeByteSpan(Span{m_received}.subspan(garblen, BIP324Cipher::GARBAGE_TERMINATOR_LEN)); if (term_span == m_cipher.GetReceiveGarbageTerminator()) break; } // Copy the garbage to a buffer. m_recv_garbage.assign(m_received.begin(), m_received.begin() + garblen); // Strip garbage + garbage terminator off the front of the receive buffer. m_received.erase(m_received.begin(), m_received.begin() + garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN); } /** Expect version packet to have been received, and process it (only after ReceiveKey). */ void ReceiveVersion() { auto contents = ReceivePacket(/*aad=*/MakeByteSpan(m_recv_garbage)); // Version packets from real BIP324 peers are expected to be empty, despite the fact that // this class supports *sending* non-empty version packets (to test that BIP324 peers // correctly ignore version packet contents). BOOST_CHECK(contents.empty()); } /** Expect application packet to have been received, with specified short id and payload. * (only after ReceiveKey). */ void ReceiveMessage(uint8_t short_id, Span payload) { auto ret = ReceivePacket(); BOOST_CHECK(ret.size() == payload.size() + 1); BOOST_CHECK(ret[0] == short_id); BOOST_CHECK(Span{ret}.subspan(1) == payload); } /** Expect application packet to have been received, with specified 12-char message type and * payload (only after ReceiveKey). */ void ReceiveMessage(const std::string& m_type, Span payload) { auto ret = ReceivePacket(); BOOST_REQUIRE(ret.size() == payload.size() + 1 + CMessageHeader::COMMAND_SIZE); BOOST_CHECK(ret[0] == 0); for (unsigned i = 0; i < 12; ++i) { if (i < m_type.size()) { BOOST_CHECK(ret[1 + i] == m_type[i]); } else { BOOST_CHECK(ret[1 + i] == 0); } } BOOST_CHECK(Span{ret}.subspan(1 + CMessageHeader::COMMAND_SIZE) == payload); } /** Schedule an encrypted packet with specified message type and payload to be sent to * transport (only after ReceiveKey). */ void SendMessage(std::string mtype, Span payload) { // Construct contents consisting of 0x00 + 12-byte message type + payload. std::vector contents(1 + CMessageHeader::COMMAND_SIZE + payload.size()); std::copy(mtype.begin(), mtype.end(), reinterpret_cast(contents.data() + 1)); std::copy(payload.begin(), payload.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE); // Send a packet with that as contents. SendPacket(contents); } /** Schedule an encrypted packet with specified short message id and payload to be sent to * transport (only after ReceiveKey). */ void SendMessage(uint8_t short_id, Span payload) { // Construct contents consisting of short_id + payload. std::vector contents(1 + payload.size()); contents[0] = short_id; std::copy(payload.begin(), payload.end(), contents.begin() + 1); // Send a packet with that as contents. SendPacket(contents); } /** Test whether the transport's session ID matches the session ID we expect. */ void CompareSessionIDs() const { auto info = m_transport.GetInfo(); BOOST_CHECK(info.session_id); BOOST_CHECK(uint256(MakeUCharSpan(m_cipher.GetSessionID())) == *info.session_id); } /** Introduce a bit error in the data scheduled to be sent. */ void Damage() { m_to_send[InsecureRandRange(m_to_send.size())] ^= (uint8_t{1} << InsecureRandRange(8)); } }; } // namespace BOOST_AUTO_TEST_CASE(v2transport_test) { // A mostly normal scenario, testing a transport in initiator mode. for (int i = 0; i < 10; ++i) { V2TransportTester tester(true); auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.SendKey(); tester.SendGarbage(); tester.ReceiveKey(); tester.SendGarbageTerm(); tester.SendVersion(); ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveGarbage(); tester.ReceiveVersion(); tester.CompareSessionIDs(); auto msg_data_1 = g_insecure_rand_ctx.randbytes(InsecureRandRange(100000)); auto msg_data_2 = g_insecure_rand_ctx.randbytes(InsecureRandRange(1000)); tester.SendMessage(uint8_t(4), msg_data_1); // cmpctblock short id tester.SendMessage(0, {}); // Invalidly encoded message tester.SendMessage("tx", msg_data_2); // 12-character encoded message type ret = tester.Interact(); BOOST_REQUIRE(ret && ret->size() == 3); BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "cmpctblock" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1)); BOOST_CHECK(!(*ret)[1]); BOOST_CHECK((*ret)[2] && (*ret)[2]->m_type == "tx" && Span{(*ret)[2]->m_recv} == MakeByteSpan(msg_data_2)); // Then send a message with a bit error, expecting failure. It's possible this failure does // not occur immediately (when the length descriptor was modified), but it should come // eventually, and no messages can be delivered anymore. tester.SendMessage("bad", msg_data_1); tester.Damage(); while (true) { ret = tester.Interact(); if (!ret) break; // failure BOOST_CHECK(ret->size() == 0); // no message can be delivered // Send another message. auto msg_data_3 = g_insecure_rand_ctx.randbytes(InsecureRandRange(10000)); tester.SendMessage(uint8_t(12), msg_data_3); // getheaders short id } } // Normal scenario, with a transport in responder node. for (int i = 0; i < 10; ++i) { V2TransportTester tester(false); tester.SendKey(); tester.SendGarbage(); auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveKey(); tester.SendGarbageTerm(); tester.SendVersion(); ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveGarbage(); tester.ReceiveVersion(); tester.CompareSessionIDs(); auto msg_data_1 = g_insecure_rand_ctx.randbytes(InsecureRandRange(100000)); auto msg_data_2 = g_insecure_rand_ctx.randbytes(InsecureRandRange(1000)); tester.SendMessage(uint8_t(14), msg_data_1); // inv short id tester.SendMessage(uint8_t(19), msg_data_2); // pong short id ret = tester.Interact(); BOOST_REQUIRE(ret && ret->size() == 2); BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "inv" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1)); BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "pong" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2)); // Then send a too-large message. auto msg_data_3 = g_insecure_rand_ctx.randbytes(4005000); tester.SendMessage(uint8_t(11), msg_data_3); // getdata short id ret = tester.Interact(); BOOST_CHECK(!ret); } // Various valid but unusual scenarios. for (int i = 0; i < 50; ++i) { /** Whether an initiator or responder is being tested. */ bool initiator = InsecureRandBool(); /** Use either 0 bytes or the maximum possible (4095 bytes) garbage length. */ size_t garb_len = InsecureRandBool() ? 0 : V2Transport::MAX_GARBAGE_LEN; /** How many decoy packets to send before the version packet. */ unsigned num_ignore_version = InsecureRandRange(10); /** What data to send in the version packet (ignored by BIP324 peers, but reserved for future extensions). */ auto ver_data = g_insecure_rand_ctx.randbytes(InsecureRandBool() ? 0 : InsecureRandRange(1000)); /** Whether to immediately send key and garbage out (required for responders, optional otherwise). */ bool send_immediately = !initiator || InsecureRandBool(); /** How many decoy packets to send before the first and second real message. */ unsigned num_decoys_1 = InsecureRandRange(1000), num_decoys_2 = InsecureRandRange(1000); V2TransportTester tester(initiator); if (send_immediately) { tester.SendKey(); tester.SendGarbage(garb_len); } auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); if (!send_immediately) { tester.SendKey(); tester.SendGarbage(garb_len); } tester.ReceiveKey(); tester.SendGarbageTerm(); for (unsigned v = 0; v < num_ignore_version; ++v) { size_t ver_ign_data_len = InsecureRandBool() ? 0 : InsecureRandRange(1000); auto ver_ign_data = g_insecure_rand_ctx.randbytes(ver_ign_data_len); tester.SendVersion(ver_ign_data, true); } tester.SendVersion(ver_data, false); ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveGarbage(); tester.ReceiveVersion(); tester.CompareSessionIDs(); for (unsigned d = 0; d < num_decoys_1; ++d) { auto decoy_data = g_insecure_rand_ctx.randbytes(InsecureRandRange(1000)); tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true); } auto msg_data_1 = g_insecure_rand_ctx.randbytes(InsecureRandRange(4000000)); tester.SendMessage(uint8_t(28), msg_data_1); for (unsigned d = 0; d < num_decoys_2; ++d) { auto decoy_data = g_insecure_rand_ctx.randbytes(InsecureRandRange(1000)); tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true); } auto msg_data_2 = g_insecure_rand_ctx.randbytes(InsecureRandRange(1000)); tester.SendMessage(uint8_t(13), msg_data_2); // headers short id // Send invalidly-encoded message tester.SendMessage(std::string("blocktxn\x00\x00\x00a", CMessageHeader::COMMAND_SIZE), {}); tester.SendMessage("foobar", {}); // test receiving unknown message type tester.AddMessage("barfoo", {}); // test sending unknown message type ret = tester.Interact(); BOOST_REQUIRE(ret && ret->size() == 4); BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "addrv2" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1)); BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "headers" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2)); BOOST_CHECK(!(*ret)[2]); BOOST_CHECK((*ret)[3] && (*ret)[3]->m_type == "foobar" && (*ret)[3]->m_recv.empty()); tester.ReceiveMessage("barfoo", {}); } // Too long garbage (initiator). { V2TransportTester tester(true); auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.SendKey(); tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1); tester.ReceiveKey(); tester.SendGarbageTerm(); ret = tester.Interact(); BOOST_CHECK(!ret); } // Too long garbage (responder). { V2TransportTester tester(false); tester.SendKey(); tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1); auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveKey(); tester.SendGarbageTerm(); ret = tester.Interact(); BOOST_CHECK(!ret); } // Send garbage that includes the first 15 garbage terminator bytes somewhere. { V2TransportTester tester(true); auto ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.SendKey(); tester.ReceiveKey(); /** The number of random garbage bytes before the included first 15 bytes of terminator. */ size_t len_before = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 + 1); /** The number of random garbage bytes after it. */ size_t len_after = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 - len_before + 1); // Construct len_before + 16 + len_after random bytes. auto garbage = g_insecure_rand_ctx.randbytes(len_before + 16 + len_after); // Replace the designed 16 bytes in the middle with the to-be-sent garbage terminator. auto garb_term = MakeUCharSpan(tester.GetCipher().GetSendGarbageTerminator()); std::copy(garb_term.begin(), garb_term.begin() + 16, garbage.begin() + len_before); // Introduce a bit error in the last byte of that copied garbage terminator, making only // the first 15 of them match. garbage[len_before + 15] ^= (uint8_t(1) << InsecureRandRange(8)); tester.SendGarbage(garbage); tester.SendGarbageTerm(); tester.SendVersion(); ret = tester.Interact(); BOOST_REQUIRE(ret && ret->empty()); tester.ReceiveGarbage(); tester.ReceiveVersion(); tester.CompareSessionIDs(); auto msg_data_1 = g_insecure_rand_ctx.randbytes(4000000); // test that receiving 4M payload works auto msg_data_2 = g_insecure_rand_ctx.randbytes(4000000); // test that sending 4M payload works tester.SendMessage(uint8_t(InsecureRandRange(223) + 33), {}); // unknown short id tester.SendMessage(uint8_t(2), msg_data_1); // "block" short id tester.AddMessage("blocktxn", msg_data_2); // schedule blocktxn to be sent to us ret = tester.Interact(); BOOST_REQUIRE(ret && ret->size() == 2); BOOST_CHECK(!(*ret)[0]); BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "block" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_1)); tester.ReceiveMessage(uint8_t(3), msg_data_2); // "blocktxn" short id } // Send correct network's V1 header { V2TransportTester tester(false); tester.SendV1Version(Params().MessageStart()); auto ret = tester.Interact(); BOOST_CHECK(ret); } // Send wrong network's V1 header { V2TransportTester tester(false); tester.SendV1Version(CChainParams::Main()->MessageStart()); auto ret = tester.Interact(); BOOST_CHECK(!ret); } } BOOST_AUTO_TEST_SUITE_END()