// Copyright (c) 2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(miniminer_tests, TestingSetup) static inline CTransactionRef make_tx(const std::vector& inputs, size_t num_outputs) { CMutableTransaction tx = CMutableTransaction(); tx.vin.resize(inputs.size()); tx.vout.resize(num_outputs); for (size_t i = 0; i < inputs.size(); ++i) { tx.vin[i].prevout = inputs[i]; } for (size_t i = 0; i < num_outputs; ++i) { tx.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL; // The actual input and output values of these transactions don't really // matter, since all accounting will use the entries' cached fees. tx.vout[i].nValue = COIN; } return MakeTransactionRef(tx); } static inline bool sanity_check(const std::vector& transactions, const std::map& bumpfees) { // No negative bumpfees. for (const auto& [outpoint, fee] : bumpfees) { if (fee < 0) return false; if (fee == 0) continue; auto outpoint_ = outpoint; // structured bindings can't be captured in C++17, so we need to use a variable const bool found = std::any_of(transactions.cbegin(), transactions.cend(), [&](const auto& tx) { return outpoint_.hash == tx->GetHash() && outpoint_.n < tx->vout.size(); }); if (!found) return false; } for (const auto& tx : transactions) { // If tx has multiple outputs, they must all have the same bumpfee (if they exist). if (tx->vout.size() > 1) { std::set distinct_bumpfees; for (size_t i{0}; i < tx->vout.size(); ++i) { const auto bumpfee = bumpfees.find(COutPoint{tx->GetHash(), static_cast(i)}); if (bumpfee != bumpfees.end()) distinct_bumpfees.insert(bumpfee->second); } if (distinct_bumpfees.size() > 1) return false; } } return true; } template Value Find(const std::map& map, const Key& key) { auto it = map.find(key); BOOST_CHECK_MESSAGE(it != map.end(), strprintf("Cannot find %s", key.ToString())); return it->second; } BOOST_FIXTURE_TEST_CASE(miniminer_1p1c, TestChain100Setup) { CTxMemPool& pool = *Assert(m_node.mempool); LOCK2(::cs_main, pool.cs); TestMemPoolEntryHelper entry; const CAmount low_fee{CENT/2000}; const CAmount normal_fee{CENT/200}; const CAmount high_fee{CENT/10}; // Create a parent tx0 and child tx1 with normal fees: const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx0)); const auto tx1 = make_tx({COutPoint{tx0->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx1)); // Create a low-feerate parent tx2 and high-feerate child tx3 (cpfp) const auto tx2 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx2)); const auto tx3 = make_tx({COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3)); // Create a parent tx4 and child tx5 where both have low fees const auto tx4 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx4)); const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5)); // Make tx5's modified fee much higher than its base fee. This should cause it to pass // the fee-related checks despite being low-feerate. pool.PrioritiseTransaction(tx5->GetHash(), CENT/100); // Create a high-feerate parent tx6, low-feerate child tx7 const auto tx6 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx6)); const auto tx7 = make_tx({COutPoint{tx6->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx7)); std::vector all_unspent_outpoints({ COutPoint{tx0->GetHash(), 1}, COutPoint{tx1->GetHash(), 0}, COutPoint{tx2->GetHash(), 1}, COutPoint{tx3->GetHash(), 0}, COutPoint{tx4->GetHash(), 1}, COutPoint{tx5->GetHash(), 0}, COutPoint{tx6->GetHash(), 1}, COutPoint{tx7->GetHash(), 0} }); for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint)); std::vector all_spent_outpoints({ COutPoint{tx0->GetHash(), 0}, COutPoint{tx2->GetHash(), 0}, COutPoint{tx4->GetHash(), 0}, COutPoint{tx6->GetHash(), 0} }); for (const auto& outpoint : all_spent_outpoints) BOOST_CHECK(pool.GetConflictTx(outpoint) != nullptr); std::vector all_parent_outputs({ COutPoint{tx0->GetHash(), 0}, COutPoint{tx0->GetHash(), 1}, COutPoint{tx2->GetHash(), 0}, COutPoint{tx2->GetHash(), 1}, COutPoint{tx4->GetHash(), 0}, COutPoint{tx4->GetHash(), 1}, COutPoint{tx6->GetHash(), 0}, COutPoint{tx6->GetHash(), 1} }); std::vector all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7}; struct TxDimensions { int32_t vsize; CAmount mod_fee; CFeeRate feerate; }; std::map tx_dims; for (const auto& tx : all_transactions) { const auto it = pool.GetIter(tx->GetHash()).value(); tx_dims.emplace(tx->GetHash(), TxDimensions{it->GetTxSize(), it->GetModifiedFee(), CFeeRate(it->GetModifiedFee(), it->GetTxSize())}); } const std::vector various_normal_feerates({CFeeRate(0), CFeeRate(500), CFeeRate(999), CFeeRate(1000), CFeeRate(2000), CFeeRate(2500), CFeeRate(3333), CFeeRate(7800), CFeeRate(11199), CFeeRate(23330), CFeeRate(50000), CFeeRate(5*CENT)}); // All nonexistent entries have a bumpfee of zero, regardless of feerate std::vector nonexistent_outpoints({ COutPoint{GetRandHash(), 0}, COutPoint{GetRandHash(), 3} }); for (const auto& outpoint : nonexistent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint)); for (const auto& feerate : various_normal_feerates) { node::MiniMiner mini_miner(pool, nonexistent_outpoints); BOOST_CHECK(mini_miner.IsReadyToCalculate()); auto bump_fees = mini_miner.CalculateBumpFees(feerate); BOOST_CHECK(!mini_miner.IsReadyToCalculate()); BOOST_CHECK(sanity_check(all_transactions, bump_fees)); BOOST_CHECK(bump_fees.size() == nonexistent_outpoints.size()); for (const auto& outpoint: nonexistent_outpoints) { auto it = bump_fees.find(outpoint); BOOST_CHECK(it != bump_fees.end()); BOOST_CHECK_EQUAL(it->second, 0); } } // Gather bump fees for all available UTXOs. for (const auto& target_feerate : various_normal_feerates) { node::MiniMiner mini_miner(pool, all_unspent_outpoints); BOOST_CHECK(mini_miner.IsReadyToCalculate()); auto bump_fees = mini_miner.CalculateBumpFees(target_feerate); BOOST_CHECK(!mini_miner.IsReadyToCalculate()); BOOST_CHECK(sanity_check(all_transactions, bump_fees)); BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size()); // Check tx0 bumpfee: no other bumper. const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second; CAmount bumpfee0 = Find(bump_fees, COutPoint{tx0->GetHash(), 1}); if (target_feerate <= tx0_dimensions.feerate) { BOOST_CHECK_EQUAL(bumpfee0, 0); } else { // Difference is fee to bump tx0 from current to target feerate. BOOST_CHECK_EQUAL(bumpfee0, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee); } // Check tx2 bumpfee: assisted by tx3. const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second; const TxDimensions& tx3_dimensions = tx_dims.find(tx3->GetHash())->second; const CFeeRate tx2_feerate = CFeeRate(tx2_dimensions.mod_fee + tx3_dimensions.mod_fee, tx2_dimensions.vsize + tx3_dimensions.vsize); CAmount bumpfee2 = Find(bump_fees, COutPoint{tx2->GetHash(), 1}); if (target_feerate <= tx2_feerate) { // As long as target feerate is below tx3's ancestor feerate, there is no bump fee. BOOST_CHECK_EQUAL(bumpfee2, 0); } else { // Difference is fee to bump tx2 from current to target feerate, without tx3. BOOST_CHECK_EQUAL(bumpfee2, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee); } // If tx5’s modified fees are sufficient for tx4 and tx5 to be picked // into the block, our prospective new transaction would not need to // bump tx4 when using tx4’s second output. If however even tx5’s // modified fee (which essentially indicates "effective feerate") is // not sufficient to bump tx4, using the second output of tx4 would // require our transaction to bump tx4 from scratch since we evaluate // transaction packages per ancestor sets and do not consider multiple // children’s fees. const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second; const TxDimensions& tx5_dimensions = tx_dims.find(tx5->GetHash())->second; const CFeeRate tx4_feerate = CFeeRate(tx4_dimensions.mod_fee + tx5_dimensions.mod_fee, tx4_dimensions.vsize + tx5_dimensions.vsize); CAmount bumpfee4 = Find(bump_fees, COutPoint{tx4->GetHash(), 1}); if (target_feerate <= tx4_feerate) { // As long as target feerate is below tx5's ancestor feerate, there is no bump fee. BOOST_CHECK_EQUAL(bumpfee4, 0); } else { // Difference is fee to bump tx4 from current to target feerate, without tx5. BOOST_CHECK_EQUAL(bumpfee4, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee); } } // Spent outpoints should usually not be requested as they would not be // considered available. However, when they are explicitly requested, we // can calculate their bumpfee to facilitate RBF-replacements for (const auto& target_feerate : various_normal_feerates) { node::MiniMiner mini_miner_all_spent(pool, all_spent_outpoints); BOOST_CHECK(mini_miner_all_spent.IsReadyToCalculate()); auto bump_fees_all_spent = mini_miner_all_spent.CalculateBumpFees(target_feerate); BOOST_CHECK(!mini_miner_all_spent.IsReadyToCalculate()); BOOST_CHECK_EQUAL(bump_fees_all_spent.size(), all_spent_outpoints.size()); node::MiniMiner mini_miner_all_parents(pool, all_parent_outputs); BOOST_CHECK(mini_miner_all_parents.IsReadyToCalculate()); auto bump_fees_all_parents = mini_miner_all_parents.CalculateBumpFees(target_feerate); BOOST_CHECK(!mini_miner_all_parents.IsReadyToCalculate()); BOOST_CHECK_EQUAL(bump_fees_all_parents.size(), all_parent_outputs.size()); for (auto& bump_fees : {bump_fees_all_parents, bump_fees_all_spent}) { // For all_parents case, both outputs from the parent should have the same bump fee, // even though only one of them is in a to-be-replaced transaction. BOOST_CHECK(sanity_check(all_transactions, bump_fees)); // Check tx0 bumpfee: no other bumper. const TxDimensions& tx0_dimensions = tx_dims.find(tx0->GetHash())->second; CAmount it0_spent = Find(bump_fees, COutPoint{tx0->GetHash(), 0}); if (target_feerate <= tx0_dimensions.feerate) { BOOST_CHECK_EQUAL(it0_spent, 0); } else { // Difference is fee to bump tx0 from current to target feerate. BOOST_CHECK_EQUAL(it0_spent, target_feerate.GetFee(tx0_dimensions.vsize) - tx0_dimensions.mod_fee); } // Check tx2 bumpfee: no other bumper, because tx3 is to-be-replaced. const TxDimensions& tx2_dimensions = tx_dims.find(tx2->GetHash())->second; const CFeeRate tx2_feerate_unbumped = tx2_dimensions.feerate; auto it2_spent = Find(bump_fees, COutPoint{tx2->GetHash(), 0}); if (target_feerate <= tx2_feerate_unbumped) { BOOST_CHECK_EQUAL(it2_spent, 0); } else { // Difference is fee to bump tx2 from current to target feerate, without tx3. BOOST_CHECK_EQUAL(it2_spent, target_feerate.GetFee(tx2_dimensions.vsize) - tx2_dimensions.mod_fee); } // Check tx4 bumpfee: no other bumper, because tx5 is to-be-replaced. const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second; const CFeeRate tx4_feerate_unbumped = tx4_dimensions.feerate; auto it4_spent = Find(bump_fees, COutPoint{tx4->GetHash(), 0}); if (target_feerate <= tx4_feerate_unbumped) { BOOST_CHECK_EQUAL(it4_spent, 0); } else { // Difference is fee to bump tx4 from current to target feerate, without tx5. BOOST_CHECK_EQUAL(it4_spent, target_feerate.GetFee(tx4_dimensions.vsize) - tx4_dimensions.mod_fee); } } } } BOOST_FIXTURE_TEST_CASE(miniminer_overlap, TestChain100Setup) { /* Tx graph for `miniminer_overlap` unit test: * * coinbase_tx [mined] ... block-chain * ------------------------------------------------- * / | \ \ ... mempool * / | \ | * tx0 tx1 tx2 tx4 * [low] [med] [high] [high] * \ | / | * \ | / tx5 * \ | / [low] * tx3 / \ * [high] tx6 tx7 * [med] [high] * * NOTE: * -> "low"/"med"/"high" denote the _absolute_ fee of each tx * -> tx3 has 3 inputs and 3 outputs, all other txs have 1 input and 2 outputs * -> tx3's feerate is lower than tx2's, as tx3 has more weight (due to having more inputs and outputs) * * -> tx2_FR = high / tx2_vsize * -> tx3_FR = high / tx3_vsize * -> tx3_ASFR = (low+med+high+high) / (tx0_vsize + tx1_vsize + tx2_vsize + tx3_vsize) * -> tx4_FR = high / tx4_vsize * -> tx6_ASFR = (high+low+med) / (tx4_vsize + tx5_vsize + tx6_vsize) * -> tx7_ASFR = (high+low+high) / (tx4_vsize + tx5_vsize + tx7_vsize) */ CTxMemPool& pool = *Assert(m_node.mempool); LOCK2(::cs_main, pool.cs); TestMemPoolEntryHelper entry; const CAmount low_fee{CENT/2000}; // 500 ṩ const CAmount med_fee{CENT/200}; // 5000 ṩ const CAmount high_fee{CENT/10}; // 100_000 ṩ // Create 3 parents of different feerates, and 1 child spending outputs from all 3 parents. const auto tx0 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx0)); const auto tx1 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(med_fee).FromTx(tx1)); const auto tx2 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx2)); const auto tx3 = make_tx({COutPoint{tx0->GetHash(), 0}, COutPoint{tx1->GetHash(), 0}, COutPoint{tx2->GetHash(), 0}}, /*num_outputs=*/3); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3)); // Create 1 grandparent and 1 parent, then 2 children. const auto tx4 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx4)); const auto tx5 = make_tx({COutPoint{tx4->GetHash(), 0}}, /*num_outputs=*/3); pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5)); const auto tx6 = make_tx({COutPoint{tx5->GetHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(med_fee).FromTx(tx6)); const auto tx7 = make_tx({COutPoint{tx5->GetHash(), 1}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(high_fee).FromTx(tx7)); std::vector all_transactions{tx0, tx1, tx2, tx3, tx4, tx5, tx6, tx7}; std::vector tx_vsizes; tx_vsizes.reserve(all_transactions.size()); for (const auto& tx : all_transactions) tx_vsizes.push_back(GetVirtualTransactionSize(*tx)); std::vector all_unspent_outpoints({ COutPoint{tx0->GetHash(), 1}, COutPoint{tx1->GetHash(), 1}, COutPoint{tx2->GetHash(), 1}, COutPoint{tx3->GetHash(), 0}, COutPoint{tx3->GetHash(), 1}, COutPoint{tx3->GetHash(), 2}, COutPoint{tx4->GetHash(), 1}, COutPoint{tx5->GetHash(), 2}, COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0} }); for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint)); const auto tx2_feerate = CFeeRate(high_fee, tx_vsizes[2]); const auto tx3_feerate = CFeeRate(high_fee, tx_vsizes[3]); // tx3's feerate is lower than tx2's. same fee, different weight. BOOST_CHECK(tx2_feerate > tx3_feerate); const auto tx3_anc_feerate = CFeeRate(low_fee + med_fee + high_fee + high_fee, tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]); const auto tx3_iter = pool.GetIter(tx3->GetHash()); BOOST_CHECK(tx3_anc_feerate == CFeeRate(tx3_iter.value()->GetModFeesWithAncestors(), tx3_iter.value()->GetSizeWithAncestors())); const auto tx4_feerate = CFeeRate(high_fee, tx_vsizes[4]); const auto tx6_anc_feerate = CFeeRate(high_fee + low_fee + med_fee, tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]); const auto tx6_iter = pool.GetIter(tx6->GetHash()); BOOST_CHECK(tx6_anc_feerate == CFeeRate(tx6_iter.value()->GetModFeesWithAncestors(), tx6_iter.value()->GetSizeWithAncestors())); const auto tx7_anc_feerate = CFeeRate(high_fee + low_fee + high_fee, tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]); const auto tx7_iter = pool.GetIter(tx7->GetHash()); BOOST_CHECK(tx7_anc_feerate == CFeeRate(tx7_iter.value()->GetModFeesWithAncestors(), tx7_iter.value()->GetSizeWithAncestors())); BOOST_CHECK(tx4_feerate > tx6_anc_feerate); BOOST_CHECK(tx4_feerate > tx7_anc_feerate); // Extremely high feerate: everybody's bumpfee is from their full ancestor set. { node::MiniMiner mini_miner(pool, all_unspent_outpoints); const CFeeRate very_high_feerate(COIN); BOOST_CHECK(tx3_anc_feerate < very_high_feerate); BOOST_CHECK(mini_miner.IsReadyToCalculate()); auto bump_fees = mini_miner.CalculateBumpFees(very_high_feerate); BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size()); BOOST_CHECK(!mini_miner.IsReadyToCalculate()); BOOST_CHECK(sanity_check(all_transactions, bump_fees)); const auto tx0_bumpfee = bump_fees.find(COutPoint{tx0->GetHash(), 1}); BOOST_CHECK(tx0_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx0_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[0]) - low_fee); const auto tx3_bumpfee = bump_fees.find(COutPoint{tx3->GetHash(), 0}); BOOST_CHECK(tx3_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx3_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee)); const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0}); BOOST_CHECK(tx6_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx6_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]) - (high_fee + low_fee + med_fee)); const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0}); BOOST_CHECK(tx7_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx7_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]) - (high_fee + low_fee + high_fee)); // Total fees: if spending multiple outputs from tx3 don't double-count fees. node::MiniMiner mini_miner_total_tx3(pool, {COutPoint{tx3->GetHash(), 0}, COutPoint{tx3->GetHash(), 1}}); BOOST_CHECK(mini_miner_total_tx3.IsReadyToCalculate()); const auto tx3_bump_fee = mini_miner_total_tx3.CalculateTotalBumpFees(very_high_feerate); BOOST_CHECK(!mini_miner_total_tx3.IsReadyToCalculate()); BOOST_CHECK(tx3_bump_fee.has_value()); BOOST_CHECK_EQUAL(tx3_bump_fee.value(), very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee)); // Total fees: if spending both tx6 and tx7, don't double-count fees. node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}}); BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate()); const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(very_high_feerate); BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate()); BOOST_CHECK(tx6_tx7_bumpfee.has_value()); BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(), very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6] + tx_vsizes[7]) - (high_fee + low_fee + med_fee + high_fee)); } // Feerate just below tx4: tx6 and tx7 have different bump fees. { const auto just_below_tx4 = CFeeRate(tx4_feerate.GetFeePerK() - 5); node::MiniMiner mini_miner(pool, all_unspent_outpoints); BOOST_CHECK(mini_miner.IsReadyToCalculate()); auto bump_fees = mini_miner.CalculateBumpFees(just_below_tx4); BOOST_CHECK(!mini_miner.IsReadyToCalculate()); BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size()); BOOST_CHECK(sanity_check(all_transactions, bump_fees)); const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0}); BOOST_CHECK(tx6_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee)); const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0}); BOOST_CHECK(tx7_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx7_bumpfee->second, just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[7]) - (low_fee + high_fee)); // Total fees: if spending both tx6 and tx7, don't double-count fees. node::MiniMiner mini_miner_tx6_tx7(pool, {COutPoint{tx6->GetHash(), 0}, COutPoint{tx7->GetHash(), 0}}); BOOST_CHECK(mini_miner_tx6_tx7.IsReadyToCalculate()); const auto tx6_tx7_bumpfee = mini_miner_tx6_tx7.CalculateTotalBumpFees(just_below_tx4); BOOST_CHECK(!mini_miner_tx6_tx7.IsReadyToCalculate()); BOOST_CHECK(tx6_tx7_bumpfee.has_value()); BOOST_CHECK_EQUAL(tx6_tx7_bumpfee.value(), just_below_tx4.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee)); } // Feerate between tx6 and tx7's ancestor feerates: don't need to bump tx5 because tx7 already does. { const auto just_above_tx6 = CFeeRate(med_fee + 10, tx_vsizes[6]); BOOST_CHECK(just_above_tx6 <= CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7])); node::MiniMiner mini_miner(pool, all_unspent_outpoints); BOOST_CHECK(mini_miner.IsReadyToCalculate()); auto bump_fees = mini_miner.CalculateBumpFees(just_above_tx6); BOOST_CHECK(!mini_miner.IsReadyToCalculate()); BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size()); BOOST_CHECK(sanity_check(all_transactions, bump_fees)); const auto tx6_bumpfee = bump_fees.find(COutPoint{tx6->GetHash(), 0}); BOOST_CHECK(tx6_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx6_bumpfee->second, just_above_tx6.GetFee(tx_vsizes[6]) - (med_fee)); const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0}); BOOST_CHECK(tx7_bumpfee != bump_fees.end()); BOOST_CHECK_EQUAL(tx7_bumpfee->second, 0); } } BOOST_FIXTURE_TEST_CASE(calculate_cluster, TestChain100Setup) { CTxMemPool& pool = *Assert(m_node.mempool); LOCK2(cs_main, pool.cs); // Add chain of size 500 TestMemPoolEntryHelper entry; std::vector chain_txids; auto& lasttx = m_coinbase_txns[0]; for (auto i{0}; i < 500; ++i) { const auto tx = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(CENT).FromTx(tx)); chain_txids.push_back(tx->GetHash()); lasttx = tx; } const auto cluster_500tx = pool.GatherClusters({lasttx->GetHash()}); CTxMemPool::setEntries cluster_500tx_set{cluster_500tx.begin(), cluster_500tx.end()}; BOOST_CHECK_EQUAL(cluster_500tx.size(), cluster_500tx_set.size()); const auto vec_iters_500 = pool.GetIterVec(chain_txids); for (const auto& iter : vec_iters_500) BOOST_CHECK(cluster_500tx_set.count(iter)); // GatherClusters stops at 500 transactions. const auto tx_501 = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(CENT).FromTx(tx_501)); const auto cluster_501 = pool.GatherClusters({tx_501->GetHash()}); BOOST_CHECK_EQUAL(cluster_501.size(), 0); /* Zig Zag cluster: * txp0 txp1 txp2 ... txp48 txp49 * \ / \ / \ \ / * txc0 txc1 txc2 ... txc48 * Note that each transaction's ancestor size is 1 or 3, and each descendant size is 1, 2 or 3. * However, all of these transactions are in the same cluster. */ std::vector zigzag_txids; for (auto p{0}; p < 50; ++p) { const auto txp = make_tx({COutPoint{GetRandHash(), 0}}, /*num_outputs=*/2); pool.addUnchecked(entry.Fee(CENT).FromTx(txp)); zigzag_txids.push_back(txp->GetHash()); } for (auto c{0}; c < 49; ++c) { const auto txc = make_tx({COutPoint{zigzag_txids[c], 1}, COutPoint{zigzag_txids[c+1], 0}}, /*num_outputs=*/1); pool.addUnchecked(entry.Fee(CENT).FromTx(txc)); zigzag_txids.push_back(txc->GetHash()); } const auto vec_iters_zigzag = pool.GetIterVec(zigzag_txids); // It doesn't matter which tx we calculate cluster for, everybody is in it. const std::vector indices{0, 22, 72, zigzag_txids.size() - 1}; for (const auto index : indices) { const auto cluster = pool.GatherClusters({zigzag_txids[index]}); BOOST_CHECK_EQUAL(cluster.size(), zigzag_txids.size()); CTxMemPool::setEntries clusterset{cluster.begin(), cluster.end()}; BOOST_CHECK_EQUAL(cluster.size(), clusterset.size()); for (const auto& iter : vec_iters_zigzag) BOOST_CHECK(clusterset.count(iter)); } } BOOST_AUTO_TEST_SUITE_END()