// Copyright (c) 2023 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using node::NodeContext; namespace { const TestingSetup* g_setup; std::vector g_outpoints_coinbase_init_mature; struct MockedTxPool : public CTxMemPool { void RollingFeeUpdate() EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); lastRollingFeeUpdate = GetTime(); blockSinceLastRollingFeeBump = true; } }; void initialize_tx_pool() { static const auto testing_setup = MakeNoLogFileContext(); g_setup = testing_setup.get(); for (int i = 0; i < 2 * COINBASE_MATURITY; ++i) { COutPoint prevout{MineBlock(g_setup->m_node, P2WSH_EMPTY)}; if (i < COINBASE_MATURITY) { // Remember the txids to avoid expensive disk access later on g_outpoints_coinbase_init_mature.push_back(prevout); } } SyncWithValidationInterfaceQueue(); } struct OutpointsUpdater final : public CValidationInterface { std::set& m_mempool_outpoints; explicit OutpointsUpdater(std::set& r) : m_mempool_outpoints{r} {} void TransactionAddedToMempool(const NewMempoolTransactionInfo& tx, uint64_t /* mempool_sequence */) override { // for coins spent we always want to be able to rbf so they're not removed // outputs from this tx can now be spent for (uint32_t index{0}; index < tx.info.m_tx->vout.size(); ++index) { m_mempool_outpoints.insert(COutPoint{tx.info.m_tx->GetHash(), index}); } } void TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason reason, uint64_t /* mempool_sequence */) override { // outpoints spent by this tx are now available for (const auto& input : tx->vin) { // Could already exist if this was a replacement m_mempool_outpoints.insert(input.prevout); } // outpoints created by this tx no longer exist for (uint32_t index{0}; index < tx->vout.size(); ++index) { m_mempool_outpoints.erase(COutPoint{tx->GetHash(), index}); } } }; struct TransactionsDelta final : public CValidationInterface { std::set& m_added; explicit TransactionsDelta(std::set& a) : m_added{a} {} void TransactionAddedToMempool(const NewMempoolTransactionInfo& tx, uint64_t /* mempool_sequence */) override { // Transactions may be entered and booted any number of times m_added.insert(tx.info.m_tx); } void TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason reason, uint64_t /* mempool_sequence */) override { // Transactions may be entered and booted any number of times m_added.erase(tx); } }; void MockTime(FuzzedDataProvider& fuzzed_data_provider, const Chainstate& chainstate) { const auto time = ConsumeTime(fuzzed_data_provider, chainstate.m_chain.Tip()->GetMedianTimePast() + 1, std::numeric_limitsnTime)>::max()); SetMockTime(time); } CTxMemPool MakeMempool(FuzzedDataProvider& fuzzed_data_provider, const NodeContext& node) { // Take the default options for tests... CTxMemPool::Options mempool_opts{MemPoolOptionsForTest(node)}; // ...override specific options for this specific fuzz suite mempool_opts.limits.ancestor_count = fuzzed_data_provider.ConsumeIntegralInRange(0, 50); mempool_opts.limits.ancestor_size_vbytes = fuzzed_data_provider.ConsumeIntegralInRange(0, 202) * 1'000; mempool_opts.limits.descendant_count = fuzzed_data_provider.ConsumeIntegralInRange(0, 50); mempool_opts.limits.descendant_size_vbytes = fuzzed_data_provider.ConsumeIntegralInRange(0, 202) * 1'000; mempool_opts.max_size_bytes = fuzzed_data_provider.ConsumeIntegralInRange(0, 200) * 1'000'000; mempool_opts.expiry = std::chrono::hours{fuzzed_data_provider.ConsumeIntegralInRange(0, 999)}; // Only interested in 2 cases: sigop cost 0 or when single legacy sigop cost is >> 1KvB nBytesPerSigOp = fuzzed_data_provider.ConsumeIntegralInRange(0, 1) * 10'000; mempool_opts.check_ratio = 1; mempool_opts.require_standard = fuzzed_data_provider.ConsumeBool(); // ...and construct a CTxMemPool from it return CTxMemPool{mempool_opts}; } FUZZ_TARGET(tx_package_eval, .init = initialize_tx_pool) { FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); const auto& node = g_setup->m_node; auto& chainstate{static_cast(node.chainman->ActiveChainstate())}; MockTime(fuzzed_data_provider, chainstate); // All RBF-spendable outpoints outside of the unsubmitted package std::set mempool_outpoints; std::map outpoints_value; for (const auto& outpoint : g_outpoints_coinbase_init_mature) { Assert(mempool_outpoints.insert(outpoint).second); outpoints_value[outpoint] = 50 * COIN; } auto outpoints_updater = std::make_shared(mempool_outpoints); RegisterSharedValidationInterface(outpoints_updater); CTxMemPool tx_pool_{MakeMempool(fuzzed_data_provider, node)}; MockedTxPool& tx_pool = *static_cast(&tx_pool_); chainstate.SetMempool(&tx_pool); LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 300) { Assert(!mempool_outpoints.empty()); std::vector txs; // Make packages of 1-to-26 transactions const auto num_txs = (size_t) fuzzed_data_provider.ConsumeIntegralInRange(1, 26); std::set package_outpoints; while (txs.size() < num_txs) { // Last transaction in a package needs to be a child of parents to get further in validation // so the last transaction to be generated(in a >1 package) must spend all package-made outputs // Note that this test currently only spends package outputs in last transaction. bool last_tx = num_txs > 1 && txs.size() == num_txs - 1; // Create transaction to add to the mempool const CTransactionRef tx = [&] { CMutableTransaction tx_mut; tx_mut.nVersion = fuzzed_data_provider.ConsumeBool() ? 3 : CTransaction::CURRENT_VERSION; tx_mut.nLockTime = fuzzed_data_provider.ConsumeBool() ? 0 : fuzzed_data_provider.ConsumeIntegral(); // Last tx will sweep all outpoints in package const auto num_in = last_tx ? package_outpoints.size() : fuzzed_data_provider.ConsumeIntegralInRange(1, mempool_outpoints.size()); auto num_out = fuzzed_data_provider.ConsumeIntegralInRange(1, mempool_outpoints.size() * 2); auto& outpoints = last_tx ? package_outpoints : mempool_outpoints; Assert(!outpoints.empty()); CAmount amount_in{0}; for (size_t i = 0; i < num_in; ++i) { // Pop random outpoint auto pop = outpoints.begin(); std::advance(pop, fuzzed_data_provider.ConsumeIntegralInRange(0, outpoints.size() - 1)); const auto outpoint = *pop; outpoints.erase(pop); // no need to update or erase from outpoints_value amount_in += outpoints_value.at(outpoint); // Create input const auto sequence = ConsumeSequence(fuzzed_data_provider); const auto script_sig = CScript{}; const auto script_wit_stack = fuzzed_data_provider.ConsumeBool() ? P2WSH_EMPTY_TRUE_STACK : P2WSH_EMPTY_TWO_STACK; CTxIn in; in.prevout = outpoint; in.nSequence = sequence; in.scriptSig = script_sig; in.scriptWitness.stack = script_wit_stack; tx_mut.vin.push_back(in); } // Duplicate an input bool dup_input = fuzzed_data_provider.ConsumeBool(); if (dup_input) { tx_mut.vin.push_back(tx_mut.vin.back()); } // Refer to a non-existent input if (fuzzed_data_provider.ConsumeBool()) { tx_mut.vin.emplace_back(); } // Make a p2pk output to make sigops adjusted vsize to violate v3, potentially, which is never spent if (last_tx && amount_in > 1000 && fuzzed_data_provider.ConsumeBool()) { tx_mut.vout.emplace_back(1000, CScript() << std::vector(33, 0x02) << OP_CHECKSIG); // Don't add any other outputs. num_out = 1; amount_in -= 1000; } const auto amount_fee = fuzzed_data_provider.ConsumeIntegralInRange(0, amount_in); const auto amount_out = (amount_in - amount_fee) / num_out; for (int i = 0; i < num_out; ++i) { tx_mut.vout.emplace_back(amount_out, P2WSH_EMPTY); } auto tx = MakeTransactionRef(tx_mut); // Restore previously removed outpoints, except in-package outpoints if (!last_tx) { for (const auto& in : tx->vin) { // It's a fake input, or a new input, or a duplicate Assert(in == CTxIn() || outpoints.insert(in.prevout).second || dup_input); } // Cache the in-package outpoints being made for (size_t i = 0; i < tx->vout.size(); ++i) { package_outpoints.emplace(tx->GetHash(), i); } } // We need newly-created values for the duration of this run for (size_t i = 0; i < tx->vout.size(); ++i) { outpoints_value[COutPoint(tx->GetHash(), i)] = tx->vout[i].nValue; } return tx; }(); txs.push_back(tx); } if (fuzzed_data_provider.ConsumeBool()) { MockTime(fuzzed_data_provider, chainstate); } if (fuzzed_data_provider.ConsumeBool()) { tx_pool.RollingFeeUpdate(); } if (fuzzed_data_provider.ConsumeBool()) { const auto& txid = fuzzed_data_provider.ConsumeBool() ? txs.back()->GetHash() : PickValue(fuzzed_data_provider, mempool_outpoints).hash; const auto delta = fuzzed_data_provider.ConsumeIntegralInRange(-50 * COIN, +50 * COIN); tx_pool.PrioritiseTransaction(txid.ToUint256(), delta); } // Remember all added transactions std::set added; auto txr = std::make_shared(added); RegisterSharedValidationInterface(txr); // When there are multiple transactions in the package, we call ProcessNewPackage(txs, test_accept=false) // and AcceptToMemoryPool(txs.back(), test_accept=true). When there is only 1 transaction, we might flip it // (the package is a test accept and ATMP is a submission). auto single_submit = txs.size() == 1 && fuzzed_data_provider.ConsumeBool(); const auto result_package = WITH_LOCK(::cs_main, return ProcessNewPackage(chainstate, tx_pool, txs, /*test_accept=*/single_submit)); // Always set bypass_limits to false because it is not supported in ProcessNewPackage and // can be a source of divergence. const auto res = WITH_LOCK(::cs_main, return AcceptToMemoryPool(chainstate, txs.back(), GetTime(), /*bypass_limits=*/false, /*test_accept=*/!single_submit)); const bool passed = res.m_result_type == MempoolAcceptResult::ResultType::VALID; SyncWithValidationInterfaceQueue(); UnregisterSharedValidationInterface(txr); // There is only 1 transaction in the package. We did a test-package-accept and a ATMP if (single_submit) { Assert(passed != added.empty()); Assert(passed == res.m_state.IsValid()); if (passed) { Assert(added.size() == 1); Assert(txs.back() == *added.begin()); } } else if (result_package.m_state.GetResult() != PackageValidationResult::PCKG_POLICY) { // We don't know anything about the validity since transactions were randomly generated, so // just use result_package.m_state here. This makes the expect_valid check meaningless, but // we can still verify that the contents of m_tx_results are consistent with m_state. const bool expect_valid{result_package.m_state.IsValid()}; Assert(!CheckPackageMempoolAcceptResult(txs, result_package, expect_valid, nullptr)); } else { // This is empty if it fails early checks, or "full" if transactions are looked at deeper Assert(result_package.m_tx_results.size() == txs.size() || result_package.m_tx_results.empty()); } CheckMempoolV3Invariants(tx_pool); } UnregisterSharedValidationInterface(outpoints_updater); WITH_LOCK(::cs_main, tx_pool.check(chainstate.CoinsTip(), chainstate.m_chain.Height() + 1)); } } // namespace