// Copyright (c) 2024 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include namespace { /** Compute a * b, represented in 4x32 bits, highest limb first. */ std::array Mul128(uint64_t a, uint64_t b) { std::array ret{0, 0, 0, 0}; /** Perform ret += v << (32 * pos), at 128-bit precision. */ auto add_fn = [&](uint64_t v, int pos) { uint64_t accum{0}; for (int i = 0; i + pos < 4; ++i) { // Add current value at limb pos in ret. accum += ret[3 - pos - i]; // Add low or high half of v. if (i == 0) accum += v & 0xffffffff; if (i == 1) accum += v >> 32; // Store lower half of result in limb pos in ret. ret[3 - pos - i] = accum & 0xffffffff; // Leave carry in accum. accum >>= 32; } // Make sure no overflow. assert(accum == 0); }; // Multiply the 4 individual limbs (schoolbook multiply, with base 2^32). add_fn((a & 0xffffffff) * (b & 0xffffffff), 0); add_fn((a >> 32) * (b & 0xffffffff), 1); add_fn((a & 0xffffffff) * (b >> 32), 1); add_fn((a >> 32) * (b >> 32), 2); return ret; } /* comparison helper for std::array */ std::strong_ordering compare_arrays(const std::array& a, const std::array& b) { for (size_t i = 0; i < a.size(); ++i) { if (a[i] != b[i]) return a[i] <=> b[i]; } return std::strong_ordering::equal; } std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2) { // Compute and compare signs. int sign_a = (a1 == 0 ? 0 : a1 < 0 ? -1 : 1) * (a2 == 0 ? 0 : a2 < 0 ? -1 : 1); int sign_b = (b1 == 0 ? 0 : b1 < 0 ? -1 : 1) * (b2 == 0 ? 0 : b2 < 0 ? -1 : 1); if (sign_a != sign_b) return sign_a <=> sign_b; // Compute absolute values. uint64_t abs_a1 = static_cast(a1), abs_a2 = static_cast(a2); uint64_t abs_b1 = static_cast(b1), abs_b2 = static_cast(b2); // Use (~x + 1) instead of the equivalent (-x) to silence the linter; mod 2^64 behavior is // intentional here. if (a1 < 0) abs_a1 = ~abs_a1 + 1; if (a2 < 0) abs_a2 = ~abs_a2 + 1; if (b1 < 0) abs_b1 = ~abs_b1 + 1; if (b2 < 0) abs_b2 = ~abs_b2 + 1; // Compute products of absolute values. auto mul_abs_a = Mul128(abs_a1, abs_a2); auto mul_abs_b = Mul128(abs_b1, abs_b2); if (sign_a < 0) { return compare_arrays(mul_abs_b, mul_abs_a); } else { return compare_arrays(mul_abs_a, mul_abs_b); } } } // namespace FUZZ_TARGET(feefrac) { FuzzedDataProvider provider(buffer.data(), buffer.size()); int64_t f1 = provider.ConsumeIntegral(); int32_t s1 = provider.ConsumeIntegral(); if (s1 == 0) f1 = 0; FeeFrac fr1(f1, s1); assert(fr1.IsEmpty() == (s1 == 0)); int64_t f2 = provider.ConsumeIntegral(); int32_t s2 = provider.ConsumeIntegral(); if (s2 == 0) f2 = 0; FeeFrac fr2(f2, s2); assert(fr2.IsEmpty() == (s2 == 0)); // Feerate comparisons auto cmp_feerate = MulCompare(f1, s2, f2, s1); assert(FeeRateCompare(fr1, fr2) == cmp_feerate); assert((fr1 << fr2) == std::is_lt(cmp_feerate)); assert((fr1 >> fr2) == std::is_gt(cmp_feerate)); // Compare with manual invocation of FeeFrac::Mul. auto cmp_mul = FeeFrac::Mul(f1, s2) <=> FeeFrac::Mul(f2, s1); assert(cmp_mul == cmp_feerate); // Same, but using FeeFrac::MulFallback. auto cmp_fallback = FeeFrac::MulFallback(f1, s2) <=> FeeFrac::MulFallback(f2, s1); assert(cmp_fallback == cmp_feerate); // Total order comparisons auto cmp_total = std::is_eq(cmp_feerate) ? (s2 <=> s1) : cmp_feerate; assert((fr1 <=> fr2) == cmp_total); assert((fr1 < fr2) == std::is_lt(cmp_total)); assert((fr1 > fr2) == std::is_gt(cmp_total)); assert((fr1 <= fr2) == std::is_lteq(cmp_total)); assert((fr1 >= fr2) == std::is_gteq(cmp_total)); assert((fr1 == fr2) == std::is_eq(cmp_total)); assert((fr1 != fr2) == std::is_neq(cmp_total)); }