// Copyright (c) 2020-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include /* From https://cr.yp.to/chacha.html chacha-merged.c version 20080118 D. J. Bernstein Public domain. */ typedef unsigned int u32; typedef unsigned char u8; #define U8C(v) (v##U) #define U32C(v) (v##U) #define U8V(v) ((u8)(v)&U8C(0xFF)) #define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF)) #define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n)))) #define U8TO32_LITTLE(p) \ (((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \ ((u32)((p)[3]) << 24)) #define U32TO8_LITTLE(p, v) \ do { \ (p)[0] = U8V((v)); \ (p)[1] = U8V((v) >> 8); \ (p)[2] = U8V((v) >> 16); \ (p)[3] = U8V((v) >> 24); \ } while (0) /* ------------------------------------------------------------------------- */ /* Data structures */ typedef struct { u32 input[16]; } ECRYPT_ctx; /* ------------------------------------------------------------------------- */ /* Mandatory functions */ void ECRYPT_keysetup( ECRYPT_ctx* ctx, const u8* key, u32 keysize, /* Key size in bits. */ u32 ivsize); /* IV size in bits. */ void ECRYPT_ivsetup( ECRYPT_ctx* ctx, const u8* iv); void ECRYPT_encrypt_bytes( ECRYPT_ctx* ctx, const u8* plaintext, u8* ciphertext, u32 msglen); /* Message length in bytes. */ /* ------------------------------------------------------------------------- */ /* Optional features */ void ECRYPT_keystream_bytes( ECRYPT_ctx* ctx, u8* keystream, u32 length); /* Length of keystream in bytes. */ /* ------------------------------------------------------------------------- */ #define ROTATE(v, c) (ROTL32(v, c)) #define XOR(v, w) ((v) ^ (w)) #define PLUS(v, w) (U32V((v) + (w))) #define PLUSONE(v) (PLUS((v), 1)) #define QUARTERROUND(a, b, c, d) \ a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \ c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \ a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \ c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); static const char sigma[] = "expand 32-byte k"; static const char tau[] = "expand 16-byte k"; void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits) { const char* constants; x->input[4] = U8TO32_LITTLE(k + 0); x->input[5] = U8TO32_LITTLE(k + 4); x->input[6] = U8TO32_LITTLE(k + 8); x->input[7] = U8TO32_LITTLE(k + 12); if (kbits == 256) { /* recommended */ k += 16; constants = sigma; } else { /* kbits == 128 */ constants = tau; } x->input[8] = U8TO32_LITTLE(k + 0); x->input[9] = U8TO32_LITTLE(k + 4); x->input[10] = U8TO32_LITTLE(k + 8); x->input[11] = U8TO32_LITTLE(k + 12); x->input[0] = U8TO32_LITTLE(constants + 0); x->input[1] = U8TO32_LITTLE(constants + 4); x->input[2] = U8TO32_LITTLE(constants + 8); x->input[3] = U8TO32_LITTLE(constants + 12); } void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv) { x->input[12] = 0; x->input[13] = 0; x->input[14] = U8TO32_LITTLE(iv + 0); x->input[15] = U8TO32_LITTLE(iv + 4); } void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes) { u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; u8* ctarget = nullptr; u8 tmp[64]; uint32_t i; if (!bytes) return; j0 = x->input[0]; j1 = x->input[1]; j2 = x->input[2]; j3 = x->input[3]; j4 = x->input[4]; j5 = x->input[5]; j6 = x->input[6]; j7 = x->input[7]; j8 = x->input[8]; j9 = x->input[9]; j10 = x->input[10]; j11 = x->input[11]; j12 = x->input[12]; j13 = x->input[13]; j14 = x->input[14]; j15 = x->input[15]; for (;;) { if (bytes < 64) { for (i = 0; i < bytes; ++i) tmp[i] = m[i]; m = tmp; ctarget = c; c = tmp; } x0 = j0; x1 = j1; x2 = j2; x3 = j3; x4 = j4; x5 = j5; x6 = j6; x7 = j7; x8 = j8; x9 = j9; x10 = j10; x11 = j11; x12 = j12; x13 = j13; x14 = j14; x15 = j15; for (i = 20; i > 0; i -= 2) { QUARTERROUND(x0, x4, x8, x12) QUARTERROUND(x1, x5, x9, x13) QUARTERROUND(x2, x6, x10, x14) QUARTERROUND(x3, x7, x11, x15) QUARTERROUND(x0, x5, x10, x15) QUARTERROUND(x1, x6, x11, x12) QUARTERROUND(x2, x7, x8, x13) QUARTERROUND(x3, x4, x9, x14) } x0 = PLUS(x0, j0); x1 = PLUS(x1, j1); x2 = PLUS(x2, j2); x3 = PLUS(x3, j3); x4 = PLUS(x4, j4); x5 = PLUS(x5, j5); x6 = PLUS(x6, j6); x7 = PLUS(x7, j7); x8 = PLUS(x8, j8); x9 = PLUS(x9, j9); x10 = PLUS(x10, j10); x11 = PLUS(x11, j11); x12 = PLUS(x12, j12); x13 = PLUS(x13, j13); x14 = PLUS(x14, j14); x15 = PLUS(x15, j15); x0 = XOR(x0, U8TO32_LITTLE(m + 0)); x1 = XOR(x1, U8TO32_LITTLE(m + 4)); x2 = XOR(x2, U8TO32_LITTLE(m + 8)); x3 = XOR(x3, U8TO32_LITTLE(m + 12)); x4 = XOR(x4, U8TO32_LITTLE(m + 16)); x5 = XOR(x5, U8TO32_LITTLE(m + 20)); x6 = XOR(x6, U8TO32_LITTLE(m + 24)); x7 = XOR(x7, U8TO32_LITTLE(m + 28)); x8 = XOR(x8, U8TO32_LITTLE(m + 32)); x9 = XOR(x9, U8TO32_LITTLE(m + 36)); x10 = XOR(x10, U8TO32_LITTLE(m + 40)); x11 = XOR(x11, U8TO32_LITTLE(m + 44)); x12 = XOR(x12, U8TO32_LITTLE(m + 48)); x13 = XOR(x13, U8TO32_LITTLE(m + 52)); x14 = XOR(x14, U8TO32_LITTLE(m + 56)); x15 = XOR(x15, U8TO32_LITTLE(m + 60)); j12 = PLUSONE(j12); if (!j12) { j13 = PLUSONE(j13); /* stopping at 2^70 bytes per nonce is user's responsibility */ } U32TO8_LITTLE(c + 0, x0); U32TO8_LITTLE(c + 4, x1); U32TO8_LITTLE(c + 8, x2); U32TO8_LITTLE(c + 12, x3); U32TO8_LITTLE(c + 16, x4); U32TO8_LITTLE(c + 20, x5); U32TO8_LITTLE(c + 24, x6); U32TO8_LITTLE(c + 28, x7); U32TO8_LITTLE(c + 32, x8); U32TO8_LITTLE(c + 36, x9); U32TO8_LITTLE(c + 40, x10); U32TO8_LITTLE(c + 44, x11); U32TO8_LITTLE(c + 48, x12); U32TO8_LITTLE(c + 52, x13); U32TO8_LITTLE(c + 56, x14); U32TO8_LITTLE(c + 60, x15); if (bytes <= 64) { if (bytes < 64) { for (i = 0; i < bytes; ++i) ctarget[i] = c[i]; } x->input[12] = j12; x->input[13] = j13; return; } bytes -= 64; c += 64; m += 64; } } void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes) { u32 i; for (i = 0; i < bytes; ++i) stream[i] = 0; ECRYPT_encrypt_bytes(x, stream, stream, bytes); } FUZZ_TARGET(crypto_diff_fuzz_chacha20) { FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; ChaCha20 chacha20; ECRYPT_ctx ctx; // D. J. Bernstein doesn't initialise ctx to 0 while Bitcoin Core initialises chacha20 to 0 in the constructor for (int i = 0; i < 16; i++) { ctx.input[i] = 0; } if (fuzzed_data_provider.ConsumeBool()) { const std::vector key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange(16, 32)); chacha20 = ChaCha20{key.data(), key.size()}; ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; ECRYPT_ivsetup(&ctx, iv); } LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) { CallOneOf( fuzzed_data_provider, [&] { const std::vector key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange(16, 32)); chacha20.SetKey(key.data(), key.size()); ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; ECRYPT_ivsetup(&ctx, iv); }, [&] { uint64_t iv = fuzzed_data_provider.ConsumeIntegral(); chacha20.SetIV(iv); ctx.input[14] = iv; ctx.input[15] = iv >> 32; }, [&] { uint64_t counter = fuzzed_data_provider.ConsumeIntegral(); chacha20.Seek(counter); ctx.input[12] = counter; ctx.input[13] = counter >> 32; }, [&] { uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange(0, 4096); std::vector output(integralInRange); chacha20.Keystream(output.data(), output.size()); std::vector djb_output(integralInRange); ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size()); assert(output == djb_output); }, [&] { uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange(0, 4096); std::vector output(integralInRange); const std::vector input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size()); chacha20.Crypt(input.data(), output.data(), input.size()); std::vector djb_output(integralInRange); ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size()); assert(output == djb_output); }); } }