// Copyright (c) 2023 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include namespace { /** Number of distinct COutPoint values used in this test. */ constexpr uint32_t NUM_OUTPOINTS = 256; /** Number of distinct Coin values used in this test (ignoring nHeight). */ constexpr uint32_t NUM_COINS = 256; /** Maximum number CCoinsViewCache objects used in this test. */ constexpr uint32_t MAX_CACHES = 4; /** Data type large enough to hold NUM_COINS-1. */ using coinidx_type = uint8_t; struct PrecomputedData { //! Randomly generated COutPoint values. COutPoint outpoints[NUM_OUTPOINTS]; //! Randomly generated Coin values. Coin coins[NUM_COINS]; PrecomputedData() { static const uint8_t PREFIX_O[1] = {'o'}; /** Hash prefix for outpoint hashes. */ static const uint8_t PREFIX_S[1] = {'s'}; /** Hash prefix for coins scriptPubKeys. */ static const uint8_t PREFIX_M[1] = {'m'}; /** Hash prefix for coins nValue/fCoinBase. */ for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) { uint32_t idx = (i * 1200U) >> 12; /* Map 3 or 4 entries to same txid. */ const uint8_t ser[4] = {uint8_t(idx), uint8_t(idx >> 8), uint8_t(idx >> 16), uint8_t(idx >> 24)}; CSHA256().Write(PREFIX_O, 1).Write(ser, sizeof(ser)).Finalize(outpoints[i].hash.begin()); outpoints[i].n = i; } for (uint32_t i = 0; i < NUM_COINS; ++i) { const uint8_t ser[4] = {uint8_t(i), uint8_t(i >> 8), uint8_t(i >> 16), uint8_t(i >> 24)}; uint256 hash; CSHA256().Write(PREFIX_S, 1).Write(ser, sizeof(ser)).Finalize(hash.begin()); /* Convert hash to scriptPubkeys (of different lengths, so SanityCheck's cached memory * usage check has a chance to detect mismatches). */ switch (i % 5U) { case 0: /* P2PKH */ coins[i].out.scriptPubKey.resize(25); coins[i].out.scriptPubKey[0] = OP_DUP; coins[i].out.scriptPubKey[1] = OP_HASH160; coins[i].out.scriptPubKey[2] = 20; std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 3); coins[i].out.scriptPubKey[23] = OP_EQUALVERIFY; coins[i].out.scriptPubKey[24] = OP_CHECKSIG; break; case 1: /* P2SH */ coins[i].out.scriptPubKey.resize(23); coins[i].out.scriptPubKey[0] = OP_HASH160; coins[i].out.scriptPubKey[1] = 20; std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2); coins[i].out.scriptPubKey[12] = OP_EQUAL; break; case 2: /* P2WPKH */ coins[i].out.scriptPubKey.resize(22); coins[i].out.scriptPubKey[0] = OP_0; coins[i].out.scriptPubKey[1] = 20; std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2); break; case 3: /* P2WSH */ coins[i].out.scriptPubKey.resize(34); coins[i].out.scriptPubKey[0] = OP_0; coins[i].out.scriptPubKey[1] = 32; std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2); break; case 4: /* P2TR */ coins[i].out.scriptPubKey.resize(34); coins[i].out.scriptPubKey[0] = OP_1; coins[i].out.scriptPubKey[1] = 32; std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2); break; } /* Hash again to construct nValue and fCoinBase. */ CSHA256().Write(PREFIX_M, 1).Write(ser, sizeof(ser)).Finalize(hash.begin()); coins[i].out.nValue = CAmount(hash.GetUint64(0) % MAX_MONEY); coins[i].fCoinBase = (hash.GetUint64(1) & 7) == 0; coins[i].nHeight = 0; /* Real nHeight used in simulation is set dynamically. */ } } }; enum class EntryType : uint8_t { /* This entry in the cache does not exist (so we'd have to look in the parent cache). */ NONE, /* This entry in the cache corresponds to an unspent coin. */ UNSPENT, /* This entry in the cache corresponds to a spent coin. */ SPENT, }; struct CacheEntry { /* Type of entry. */ EntryType entrytype; /* Index in the coins array this entry corresponds to (only if entrytype == UNSPENT). */ coinidx_type coinidx; /* nHeight value for this entry (so the coins[coinidx].nHeight value is ignored; only if entrytype == UNSPENT). */ uint32_t height; }; struct CacheLevel { CacheEntry entry[NUM_OUTPOINTS]; void Wipe() { for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) { entry[i].entrytype = EntryType::NONE; } } }; /** Class for the base of the hierarchy (roughly simulating a memory-backed CCoinsViewDB). * * The initial state consists of the empty UTXO set, though coins whose output index * is 3 (mod 5) always have GetCoin() succeed (but returning an IsSpent() coin unless a UTXO * exists). Coins whose output index is 4 (mod 5) have GetCoin() always succeed after being spent. * This exercises code paths with spent, non-DIRTY cache entries. */ class CoinsViewBottom final : public CCoinsView { std::map m_data; public: bool GetCoin(const COutPoint& outpoint, Coin& coin) const final { auto it = m_data.find(outpoint); if (it == m_data.end()) { if ((outpoint.n % 5) == 3) { coin.Clear(); return true; } return false; } else { coin = it->second; return true; } } bool HaveCoin(const COutPoint& outpoint) const final { return m_data.count(outpoint); } uint256 GetBestBlock() const final { return {}; } std::vector GetHeadBlocks() const final { return {}; } std::unique_ptr Cursor() const final { return {}; } size_t EstimateSize() const final { return m_data.size(); } bool BatchWrite(CCoinsMap& data, const uint256&, bool erase) final { for (auto it = data.begin(); it != data.end(); it = erase ? data.erase(it) : std::next(it)) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { if (it->second.coin.IsSpent() && (it->first.n % 5) != 4) { m_data.erase(it->first); } else if (erase) { m_data[it->first] = std::move(it->second.coin); } else { m_data[it->first] = it->second.coin; } } else { /* For non-dirty entries being written, compare them with what we have. */ auto it2 = m_data.find(it->first); if (it->second.coin.IsSpent()) { assert(it2 == m_data.end() || it2->second.IsSpent()); } else { assert(it2 != m_data.end()); assert(it->second.coin.out == it2->second.out); assert(it->second.coin.fCoinBase == it2->second.fCoinBase); assert(it->second.coin.nHeight == it2->second.nHeight); } } } return true; } }; } // namespace FUZZ_TARGET(coinscache_sim) { /** Precomputed COutPoint and CCoins values. */ static const PrecomputedData data; /** Dummy coinsview instance (base of the hierarchy). */ CoinsViewBottom bottom; /** Real CCoinsViewCache objects. */ std::vector> caches; /** Simulated cache data (sim_caches[0] matches bottom, sim_caches[i+1] matches caches[i]). */ CacheLevel sim_caches[MAX_CACHES + 1]; /** Current height in the simulation. */ uint32_t current_height = 1U; // Initialize bottom simulated cache. sim_caches[0].Wipe(); /** Helper lookup function in the simulated cache stack. */ auto lookup = [&](uint32_t outpointidx, int sim_idx = -1) -> std::optional> { uint32_t cache_idx = sim_idx == -1 ? caches.size() : sim_idx; while (true) { const auto& entry = sim_caches[cache_idx].entry[outpointidx]; if (entry.entrytype == EntryType::UNSPENT) { return {{entry.coinidx, entry.height}}; } else if (entry.entrytype == EntryType::SPENT) { return std::nullopt; }; if (cache_idx == 0) break; --cache_idx; } return std::nullopt; }; /** Flush changes in top cache to the one below. */ auto flush = [&]() { assert(caches.size() >= 1); auto& cache = sim_caches[caches.size()]; auto& prev_cache = sim_caches[caches.size() - 1]; for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { if (cache.entry[outpointidx].entrytype != EntryType::NONE) { prev_cache.entry[outpointidx] = cache.entry[outpointidx]; cache.entry[outpointidx].entrytype = EntryType::NONE; } } }; // Main simulation loop: read commands from the fuzzer input, and apply them // to both the real cache stack and the simulation. FuzzedDataProvider provider(buffer.data(), buffer.size()); LIMITED_WHILE(provider.remaining_bytes(), 10000) { // Every operation (except "Change height") moves current height forward, // so it functions as a kind of epoch, making ~all UTXOs unique. ++current_height; // Make sure there is always at least one CCoinsViewCache. if (caches.empty()) { caches.emplace_back(new CCoinsViewCache(&bottom, /*deterministic=*/true)); sim_caches[caches.size()].Wipe(); } // Execute command. CallOneOf( provider, [&]() { // GetCoin uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Look up in simulation data. auto sim = lookup(outpointidx); // Look up in real caches. Coin realcoin; auto real = caches.back()->GetCoin(data.outpoints[outpointidx], realcoin); // Compare results. if (!sim.has_value()) { assert(!real || realcoin.IsSpent()); } else { assert(real && !realcoin.IsSpent()); const auto& simcoin = data.coins[sim->first]; assert(realcoin.out == simcoin.out); assert(realcoin.fCoinBase == simcoin.fCoinBase); assert(realcoin.nHeight == sim->second); } }, [&]() { // HaveCoin uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Look up in simulation data. auto sim = lookup(outpointidx); // Look up in real caches. auto real = caches.back()->HaveCoin(data.outpoints[outpointidx]); // Compare results. assert(sim.has_value() == real); }, [&]() { // HaveCoinInCache uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Invoke on real cache (there is no equivalent in simulation, so nothing to compare result with). (void)caches.back()->HaveCoinInCache(data.outpoints[outpointidx]); }, [&]() { // AccessCoin uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Look up in simulation data. auto sim = lookup(outpointidx); // Look up in real caches. const auto& realcoin = caches.back()->AccessCoin(data.outpoints[outpointidx]); // Compare results. if (!sim.has_value()) { assert(realcoin.IsSpent()); } else { assert(!realcoin.IsSpent()); const auto& simcoin = data.coins[sim->first]; assert(simcoin.out == realcoin.out); assert(simcoin.fCoinBase == realcoin.fCoinBase); assert(realcoin.nHeight == sim->second); } }, [&]() { // AddCoin (only possible_overwrite if necessary) uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); uint32_t coinidx = provider.ConsumeIntegralInRange(0, NUM_COINS - 1); // Look up in simulation data (to know whether we must set possible_overwrite or not). auto sim = lookup(outpointidx); // Invoke on real caches. Coin coin = data.coins[coinidx]; coin.nHeight = current_height; caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), sim.has_value()); // Apply to simulation data. auto& entry = sim_caches[caches.size()].entry[outpointidx]; entry.entrytype = EntryType::UNSPENT; entry.coinidx = coinidx; entry.height = current_height; }, [&]() { // AddCoin (always possible_overwrite) uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); uint32_t coinidx = provider.ConsumeIntegralInRange(0, NUM_COINS - 1); // Invoke on real caches. Coin coin = data.coins[coinidx]; coin.nHeight = current_height; caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), true); // Apply to simulation data. auto& entry = sim_caches[caches.size()].entry[outpointidx]; entry.entrytype = EntryType::UNSPENT; entry.coinidx = coinidx; entry.height = current_height; }, [&]() { // SpendCoin (moveto = nullptr) uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Invoke on real caches. caches.back()->SpendCoin(data.outpoints[outpointidx], nullptr); // Apply to simulation data. sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT; }, [&]() { // SpendCoin (with moveto) uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Look up in simulation data (to compare the returned *moveto with). auto sim = lookup(outpointidx); // Invoke on real caches. Coin realcoin; caches.back()->SpendCoin(data.outpoints[outpointidx], &realcoin); // Apply to simulation data. sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT; // Compare *moveto with the value expected based on simulation data. if (!sim.has_value()) { assert(realcoin.IsSpent()); } else { assert(!realcoin.IsSpent()); const auto& simcoin = data.coins[sim->first]; assert(simcoin.out == realcoin.out); assert(simcoin.fCoinBase == realcoin.fCoinBase); assert(realcoin.nHeight == sim->second); } }, [&]() { // Uncache uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); // Apply to real caches (there is no equivalent in our simulation). caches.back()->Uncache(data.outpoints[outpointidx]); }, [&]() { // Add a cache level (if not already at the max). if (caches.size() != MAX_CACHES) { // Apply to real caches. caches.emplace_back(new CCoinsViewCache(&*caches.back(), /*deterministic=*/true)); // Apply to simulation data. sim_caches[caches.size()].Wipe(); } }, [&]() { // Remove a cache level. // Apply to real caches (this reduces caches.size(), implicitly doing the same on the simulation data). caches.back()->SanityCheck(); caches.pop_back(); }, [&]() { // Flush. // Apply to simulation data. flush(); // Apply to real caches. caches.back()->Flush(); }, [&]() { // Sync. // Apply to simulation data (note that in our simulation, syncing and flushing is the same thing). flush(); // Apply to real caches. caches.back()->Sync(); }, [&]() { // Flush + ReallocateCache. // Apply to simulation data. flush(); // Apply to real caches. caches.back()->Flush(); caches.back()->ReallocateCache(); }, [&]() { // GetCacheSize (void)caches.back()->GetCacheSize(); }, [&]() { // DynamicMemoryUsage (void)caches.back()->DynamicMemoryUsage(); }, [&]() { // Change height current_height = provider.ConsumeIntegralInRange(1, current_height - 1); } ); } // Sanity check all the remaining caches for (const auto& cache : caches) { cache->SanityCheck(); } // Full comparison between caches and simulation data, from bottom to top, // as AccessCoin on a higher cache may affect caches below it. for (unsigned sim_idx = 1; sim_idx <= caches.size(); ++sim_idx) { auto& cache = *caches[sim_idx - 1]; size_t cache_size = 0; for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { cache_size += cache.HaveCoinInCache(data.outpoints[outpointidx]); const auto& real = cache.AccessCoin(data.outpoints[outpointidx]); auto sim = lookup(outpointidx, sim_idx); if (!sim.has_value()) { assert(real.IsSpent()); } else { assert(!real.IsSpent()); assert(real.out == data.coins[sim->first].out); assert(real.fCoinBase == data.coins[sim->first].fCoinBase); assert(real.nHeight == sim->second); } } // HaveCoinInCache ignores spent coins, so GetCacheSize() may exceed it. */ assert(cache.GetCacheSize() >= cache_size); } // Compare the bottom coinsview (not a CCoinsViewCache) with sim_cache[0]. for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { Coin realcoin; bool real = bottom.GetCoin(data.outpoints[outpointidx], realcoin); auto sim = lookup(outpointidx, 0); if (!sim.has_value()) { assert(!real || realcoin.IsSpent()); } else { assert(real && !realcoin.IsSpent()); assert(realcoin.out == data.coins[sim->first].out); assert(realcoin.fCoinBase == data.coins[sim->first].fCoinBase); assert(realcoin.nHeight == sim->second); } } }