// Copyright (c) 2020-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { const BasicTestingSetup* g_setup; int32_t GetCheckRatio() { return std::clamp(g_setup->m_node.args->GetIntArg("-checkaddrman", 0), 0, 1000000); } } // namespace void initialize_addrman() { static const auto testing_setup = MakeNoLogFileContext<>(ChainType::REGTEST); g_setup = testing_setup.get(); } [[nodiscard]] inline NetGroupManager ConsumeNetGroupManager(FuzzedDataProvider& fuzzed_data_provider) noexcept { std::vector asmap = ConsumeRandomLengthBitVector(fuzzed_data_provider); if (!SanityCheckASMap(asmap, 128)) asmap.clear(); return NetGroupManager(asmap); } FUZZ_TARGET(data_stream_addr_man, .init = initialize_addrman) { FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; DataStream data_stream = ConsumeDataStream(fuzzed_data_provider); NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)}; AddrMan addr_man(netgroupman, /*deterministic=*/false, GetCheckRatio()); try { ReadFromStream(addr_man, data_stream); } catch (const std::exception&) { } } /** * Generate a random address. Always returns a valid address. */ CNetAddr RandAddr(FuzzedDataProvider& fuzzed_data_provider, FastRandomContext& fast_random_context) { CNetAddr addr; assert(!addr.IsValid()); for (size_t i = 0; i < 8 && !addr.IsValid(); ++i) { if (fuzzed_data_provider.remaining_bytes() > 1 && fuzzed_data_provider.ConsumeBool()) { addr = ConsumeNetAddr(fuzzed_data_provider); } else { addr = ConsumeNetAddr(fuzzed_data_provider, &fast_random_context); } } // Return a dummy IPv4 5.5.5.5 if we generated an invalid address. if (!addr.IsValid()) { in_addr v4_addr = {}; v4_addr.s_addr = 0x05050505; addr = CNetAddr{v4_addr}; } return addr; } /** Fill addrman with lots of addresses from lots of sources. */ void FillAddrman(AddrMan& addrman, FuzzedDataProvider& fuzzed_data_provider) { // Add a fraction of the addresses to the "tried" table. // 0, 1, 2, 3 corresponding to 0%, 100%, 50%, 33% const size_t n = fuzzed_data_provider.ConsumeIntegralInRange(0, 3); const size_t num_sources = fuzzed_data_provider.ConsumeIntegralInRange(1, 50); CNetAddr prev_source; // Generate a FastRandomContext seed to use inside the loops instead of // fuzzed_data_provider. When fuzzed_data_provider is exhausted it // just returns 0. FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)}; for (size_t i = 0; i < num_sources; ++i) { const auto source = RandAddr(fuzzed_data_provider, fast_random_context); const size_t num_addresses = fast_random_context.randrange(500) + 1; // [1..500] for (size_t j = 0; j < num_addresses; ++j) { const auto addr = CAddress{CService{RandAddr(fuzzed_data_provider, fast_random_context), 8333}, NODE_NETWORK}; const std::chrono::seconds time_penalty{fast_random_context.randrange(100000001)}; addrman.Add({addr}, source, time_penalty); if (n > 0 && addrman.Size() % n == 0) { addrman.Good(addr, Now()); } // Add 10% of the addresses from more than one source. if (fast_random_context.randrange(10) == 0 && prev_source.IsValid()) { addrman.Add({addr}, prev_source, time_penalty); } } prev_source = source; } } class AddrManDeterministic : public AddrMan { public: explicit AddrManDeterministic(const NetGroupManager& netgroupman, FuzzedDataProvider& fuzzed_data_provider) : AddrMan(netgroupman, /*deterministic=*/true, GetCheckRatio()) { WITH_LOCK(m_impl->cs, m_impl->insecure_rand = FastRandomContext{ConsumeUInt256(fuzzed_data_provider)}); } /** * Compare with another AddrMan. * This compares: * - the values in `mapInfo` (the keys aka ids are ignored) * - vvNew entries refer to the same addresses * - vvTried entries refer to the same addresses */ bool operator==(const AddrManDeterministic& other) const { LOCK2(m_impl->cs, other.m_impl->cs); if (m_impl->mapInfo.size() != other.m_impl->mapInfo.size() || m_impl->nNew != other.m_impl->nNew || m_impl->nTried != other.m_impl->nTried) { return false; } // Check that all values in `mapInfo` are equal to all values in `other.mapInfo`. // Keys may be different. auto addrinfo_hasher = [](const AddrInfo& a) { CSipHasher hasher(0, 0); auto addr_key = a.GetKey(); auto source_key = a.source.GetAddrBytes(); hasher.Write(TicksSinceEpoch(a.m_last_success)); hasher.Write(a.nAttempts); hasher.Write(a.nRefCount); hasher.Write(a.fInTried); hasher.Write(a.GetNetwork()); hasher.Write(a.source.GetNetwork()); hasher.Write(addr_key.size()); hasher.Write(source_key.size()); hasher.Write(addr_key); hasher.Write(source_key); return (size_t)hasher.Finalize(); }; auto addrinfo_eq = [](const AddrInfo& lhs, const AddrInfo& rhs) { return std::tie(static_cast(lhs), lhs.source, lhs.m_last_success, lhs.nAttempts, lhs.nRefCount, lhs.fInTried) == std::tie(static_cast(rhs), rhs.source, rhs.m_last_success, rhs.nAttempts, rhs.nRefCount, rhs.fInTried); }; using Addresses = std::unordered_set; const size_t num_addresses{m_impl->mapInfo.size()}; Addresses addresses{num_addresses, addrinfo_hasher, addrinfo_eq}; for (const auto& [id, addr] : m_impl->mapInfo) { addresses.insert(addr); } Addresses other_addresses{num_addresses, addrinfo_hasher, addrinfo_eq}; for (const auto& [id, addr] : other.m_impl->mapInfo) { other_addresses.insert(addr); } if (addresses != other_addresses) { return false; } auto IdsReferToSameAddress = [&](int id, int other_id) EXCLUSIVE_LOCKS_REQUIRED(m_impl->cs, other.m_impl->cs) { if (id == -1 && other_id == -1) { return true; } if ((id == -1 && other_id != -1) || (id != -1 && other_id == -1)) { return false; } return m_impl->mapInfo.at(id) == other.m_impl->mapInfo.at(other_id); }; // Check that `vvNew` contains the same addresses as `other.vvNew`. Notice - `vvNew[i][j]` // contains just an id and the address is to be found in `mapInfo.at(id)`. The ids // themselves may differ between `vvNew` and `other.vvNew`. for (size_t i = 0; i < ADDRMAN_NEW_BUCKET_COUNT; ++i) { for (size_t j = 0; j < ADDRMAN_BUCKET_SIZE; ++j) { if (!IdsReferToSameAddress(m_impl->vvNew[i][j], other.m_impl->vvNew[i][j])) { return false; } } } // Same for `vvTried`. for (size_t i = 0; i < ADDRMAN_TRIED_BUCKET_COUNT; ++i) { for (size_t j = 0; j < ADDRMAN_BUCKET_SIZE; ++j) { if (!IdsReferToSameAddress(m_impl->vvTried[i][j], other.m_impl->vvTried[i][j])) { return false; } } } return true; } }; FUZZ_TARGET(addrman, .init = initialize_addrman) { FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); SetMockTime(ConsumeTime(fuzzed_data_provider)); NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)}; auto addr_man_ptr = std::make_unique(netgroupman, fuzzed_data_provider); if (fuzzed_data_provider.ConsumeBool()) { const std::vector serialized_data{ConsumeRandomLengthByteVector(fuzzed_data_provider)}; DataStream ds{serialized_data}; try { ds >> *addr_man_ptr; } catch (const std::ios_base::failure&) { addr_man_ptr = std::make_unique(netgroupman, fuzzed_data_provider); } } AddrManDeterministic& addr_man = *addr_man_ptr; LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) { CallOneOf( fuzzed_data_provider, [&] { addr_man.ResolveCollisions(); }, [&] { (void)addr_man.SelectTriedCollision(); }, [&] { std::vector addresses; LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) { addresses.push_back(ConsumeAddress(fuzzed_data_provider)); } addr_man.Add(addresses, ConsumeNetAddr(fuzzed_data_provider), std::chrono::seconds{ConsumeTime(fuzzed_data_provider, 0, 100000000)}); }, [&] { addr_man.Good(ConsumeService(fuzzed_data_provider), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}}); }, [&] { addr_man.Attempt(ConsumeService(fuzzed_data_provider), fuzzed_data_provider.ConsumeBool(), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}}); }, [&] { addr_man.Connected(ConsumeService(fuzzed_data_provider), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}}); }, [&] { addr_man.SetServices(ConsumeService(fuzzed_data_provider), ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS)); }); } const AddrMan& const_addr_man{addr_man}; std::optional network; if (fuzzed_data_provider.ConsumeBool()) { network = fuzzed_data_provider.PickValueInArray(ALL_NETWORKS); } (void)const_addr_man.GetAddr( /*max_addresses=*/fuzzed_data_provider.ConsumeIntegralInRange(0, 4096), /*max_pct=*/fuzzed_data_provider.ConsumeIntegralInRange(0, 4096), network, /*filtered=*/fuzzed_data_provider.ConsumeBool()); (void)const_addr_man.Select(fuzzed_data_provider.ConsumeBool(), network); std::optional in_new; if (fuzzed_data_provider.ConsumeBool()) { in_new = fuzzed_data_provider.ConsumeBool(); } (void)const_addr_man.Size(network, in_new); DataStream data_stream{}; data_stream << const_addr_man; } // Check that serialize followed by unserialize produces the same addrman. FUZZ_TARGET(addrman_serdeser, .init = initialize_addrman) { FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); SetMockTime(ConsumeTime(fuzzed_data_provider)); NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)}; AddrManDeterministic addr_man1{netgroupman, fuzzed_data_provider}; AddrManDeterministic addr_man2{netgroupman, fuzzed_data_provider}; DataStream data_stream{}; FillAddrman(addr_man1, fuzzed_data_provider); data_stream << addr_man1; data_stream >> addr_man2; assert(addr_man1 == addr_man2); }