// Copyright (c) 2012-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include class CAddrManTest : public CAddrMan { private: bool deterministic; public: explicit CAddrManTest(bool makeDeterministic = true, std::vector asmap = std::vector()) { if (makeDeterministic) { // Set addrman addr placement to be deterministic. MakeDeterministic(); } deterministic = makeDeterministic; m_asmap = asmap; } //! Ensure that bucket placement is always the same for testing purposes. void MakeDeterministic() { nKey.SetNull(); insecure_rand = FastRandomContext(true); } CAddrInfo* Find(const CNetAddr& addr, int* pnId = nullptr) { LOCK(cs); return CAddrMan::Find(addr, pnId); } CAddrInfo* Create(const CAddress& addr, const CNetAddr& addrSource, int* pnId = nullptr) { LOCK(cs); return CAddrMan::Create(addr, addrSource, pnId); } void Delete(int nId) { LOCK(cs); CAddrMan::Delete(nId); } // Used to test deserialization std::pair GetBucketAndEntry(const CAddress& addr) { LOCK(cs); int nId = mapAddr[addr]; for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; ++bucket) { for (int entry = 0; entry < ADDRMAN_BUCKET_SIZE; ++entry) { if (nId == vvNew[bucket][entry]) { return std::pair(bucket, entry); } } } return std::pair(-1, -1); } // Simulates connection failure so that we can test eviction of offline nodes void SimConnFail(const CService& addr) { int64_t nLastSuccess = 1; // Set last good connection in the deep past. Good(addr, true, nLastSuccess); bool count_failure = false; int64_t nLastTry = GetAdjustedTime()-61; Attempt(addr, count_failure, nLastTry); } void Clear() { CAddrMan::Clear(); if (deterministic) { nKey.SetNull(); insecure_rand = FastRandomContext(true); } } }; static CNetAddr ResolveIP(const std::string& ip) { CNetAddr addr; BOOST_CHECK_MESSAGE(LookupHost(ip, addr, false), strprintf("failed to resolve: %s", ip)); return addr; } static CService ResolveService(const std::string& ip, uint16_t port = 0) { CService serv; BOOST_CHECK_MESSAGE(Lookup(ip, serv, port, false), strprintf("failed to resolve: %s:%i", ip, port)); return serv; } static std::vector FromBytes(const unsigned char* source, int vector_size) { std::vector result(vector_size); for (int byte_i = 0; byte_i < vector_size / 8; ++byte_i) { unsigned char cur_byte = source[byte_i]; for (int bit_i = 0; bit_i < 8; ++bit_i) { result[byte_i * 8 + bit_i] = (cur_byte >> bit_i) & 1; } } return result; } BOOST_FIXTURE_TEST_SUITE(addrman_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(addrman_simple) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Does Addrman respond correctly when empty. BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null = addrman.Select(); BOOST_CHECK_EQUAL(addr_null.ToString(), "[::]:0"); // Test: Does Addrman::Add work as expected. CService addr1 = ResolveService("250.1.1.1", 8333); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret1 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: Does IP address deduplication work correctly. // Expected dup IP should not be added. CService addr1_dup = ResolveService("250.1.1.1", 8333); BOOST_CHECK(!addrman.Add(CAddress(addr1_dup, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); // Test: New table has one addr and we add a diff addr we should // have at least one addr. // Note that addrman's size cannot be tested reliably after insertion, as // hash collisions may occur. But we can always be sure of at least one // success. CService addr2 = ResolveService("250.1.1.2", 8333); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK(addrman.size() >= 1); // Test: AddrMan::Clear() should empty the new table. addrman.Clear(); BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_null2.ToString(), "[::]:0"); // Test: AddrMan::Add multiple addresses works as expected std::vector vAddr; vAddr.push_back(CAddress(ResolveService("250.1.1.3", 8333), NODE_NONE)); vAddr.push_back(CAddress(ResolveService("250.1.1.4", 8333), NODE_NONE)); BOOST_CHECK(addrman.Add(vAddr, source)); BOOST_CHECK(addrman.size() >= 1); } BOOST_AUTO_TEST_CASE(addrman_ports) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); // Test 7; Addr with same IP but diff port does not replace existing addr. CService addr1 = ResolveService("250.1.1.1", 8333); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CService addr1_port = ResolveService("250.1.1.1", 8334); BOOST_CHECK(!addrman.Add(CAddress(addr1_port, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "250.1.1.1:8333"); // Test: Add same IP but diff port to tried table, it doesn't get added. // Perhaps this is not ideal behavior but it is the current behavior. addrman.Good(CAddress(addr1_port, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret3 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_select) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Select from new with 1 addr in new. CService addr1 = ResolveService("250.1.1.1", 8333); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret1 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: move addr to tried, select from new expected nothing returned. addrman.Good(CAddress(addr1, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "[::]:0"); CAddrInfo addr_ret3 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); BOOST_CHECK_EQUAL(addrman.size(), 1U); // Add three addresses to new table. CService addr2 = ResolveService("250.3.1.1", 8333); CService addr3 = ResolveService("250.3.2.2", 9999); CService addr4 = ResolveService("250.3.3.3", 9999); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), ResolveService("250.3.1.1", 8333))); BOOST_CHECK(addrman.Add(CAddress(addr3, NODE_NONE), ResolveService("250.3.1.1", 8333))); BOOST_CHECK(addrman.Add(CAddress(addr4, NODE_NONE), ResolveService("250.4.1.1", 8333))); // Add three addresses to tried table. CService addr5 = ResolveService("250.4.4.4", 8333); CService addr6 = ResolveService("250.4.5.5", 7777); CService addr7 = ResolveService("250.4.6.6", 8333); BOOST_CHECK(addrman.Add(CAddress(addr5, NODE_NONE), ResolveService("250.3.1.1", 8333))); addrman.Good(CAddress(addr5, NODE_NONE)); BOOST_CHECK(addrman.Add(CAddress(addr6, NODE_NONE), ResolveService("250.3.1.1", 8333))); addrman.Good(CAddress(addr6, NODE_NONE)); BOOST_CHECK(addrman.Add(CAddress(addr7, NODE_NONE), ResolveService("250.1.1.3", 8333))); addrman.Good(CAddress(addr7, NODE_NONE)); // Test: 6 addrs + 1 addr from last test = 7. BOOST_CHECK_EQUAL(addrman.size(), 7U); // Test: Select pulls from new and tried regardless of port number. std::set ports; for (int i = 0; i < 20; ++i) { ports.insert(addrman.Select().GetPort()); } BOOST_CHECK_EQUAL(ports.size(), 3U); } BOOST_AUTO_TEST_CASE(addrman_new_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 18; i++) { CService addr = ResolveService("250.1.1." + ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); //Test: No collision in new table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } //Test: new table collision! CService addr1 = ResolveService("250.1.1.18"); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 17U); CService addr2 = ResolveService("250.1.1.19"); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 18U); } BOOST_AUTO_TEST_CASE(addrman_tried_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 80; i++) { CService addr = ResolveService("250.1.1." + ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(CAddress(addr, NODE_NONE)); //Test: No collision in tried table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } //Test: tried table collision! CService addr1 = ResolveService("250.1.1.80"); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 79U); CService addr2 = ResolveService("250.1.1.81"); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 80U); } BOOST_AUTO_TEST_CASE(addrman_find) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CAddress addr3 = CAddress(ResolveService("251.255.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.1.2.2"); BOOST_CHECK(addrman.Add(addr1, source1)); BOOST_CHECK(!addrman.Add(addr2, source2)); BOOST_CHECK(addrman.Add(addr3, source1)); // Test: ensure Find returns an IP matching what we searched on. CAddrInfo* info1 = addrman.Find(addr1); BOOST_REQUIRE(info1); BOOST_CHECK_EQUAL(info1->ToString(), "250.1.2.1:8333"); // Test 18; Find does not discriminate by port number. CAddrInfo* info2 = addrman.Find(addr2); BOOST_REQUIRE(info2); BOOST_CHECK_EQUAL(info2->ToString(), info1->ToString()); // Test: Find returns another IP matching what we searched on. CAddrInfo* info3 = addrman.Find(addr3); BOOST_REQUIRE(info3); BOOST_CHECK_EQUAL(info3->ToString(), "251.255.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_create) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; CAddrInfo* pinfo = addrman.Create(addr1, source1, &nId); // Test: The result should be the same as the input addr. BOOST_CHECK_EQUAL(pinfo->ToString(), "250.1.2.1:8333"); CAddrInfo* info2 = addrman.Find(addr1); BOOST_CHECK_EQUAL(info2->ToString(), "250.1.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_delete) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; addrman.Create(addr1, source1, &nId); // Test: Delete should actually delete the addr. BOOST_CHECK_EQUAL(addrman.size(), 1U); addrman.Delete(nId); BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo* info2 = addrman.Find(addr1); BOOST_CHECK(info2 == nullptr); } BOOST_AUTO_TEST_CASE(addrman_getaddr) { CAddrManTest addrman; // Test: Sanity check, GetAddr should never return anything if addrman // is empty. BOOST_CHECK_EQUAL(addrman.size(), 0U); std::vector vAddr1 = addrman.GetAddr(/* max_addresses */ 0, /* max_pct */ 0, /* network */ std::nullopt); BOOST_CHECK_EQUAL(vAddr1.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.250.2.1", 8333), NODE_NONE); addr1.nTime = GetAdjustedTime(); // Set time so isTerrible = false CAddress addr2 = CAddress(ResolveService("250.251.2.2", 9999), NODE_NONE); addr2.nTime = GetAdjustedTime(); CAddress addr3 = CAddress(ResolveService("251.252.2.3", 8333), NODE_NONE); addr3.nTime = GetAdjustedTime(); CAddress addr4 = CAddress(ResolveService("252.253.3.4", 8333), NODE_NONE); addr4.nTime = GetAdjustedTime(); CAddress addr5 = CAddress(ResolveService("252.254.4.5", 8333), NODE_NONE); addr5.nTime = GetAdjustedTime(); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.2.3.3"); // Test: Ensure GetAddr works with new addresses. BOOST_CHECK(addrman.Add(addr1, source1)); BOOST_CHECK(addrman.Add(addr2, source2)); BOOST_CHECK(addrman.Add(addr3, source1)); BOOST_CHECK(addrman.Add(addr4, source2)); BOOST_CHECK(addrman.Add(addr5, source1)); BOOST_CHECK_EQUAL(addrman.GetAddr(/* max_addresses */ 0, /* max_pct */ 0, /* network */ std::nullopt).size(), 5U); // Net processing asks for 23% of addresses. 23% of 5 is 1 rounded down. BOOST_CHECK_EQUAL(addrman.GetAddr(/* max_addresses */ 2500, /* max_pct */ 23, /* network */ std::nullopt).size(), 1U); // Test: Ensure GetAddr works with new and tried addresses. addrman.Good(CAddress(addr1, NODE_NONE)); addrman.Good(CAddress(addr2, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.GetAddr(/* max_addresses */ 0, /* max_pct */ 0, /* network */ std::nullopt).size(), 5U); BOOST_CHECK_EQUAL(addrman.GetAddr(/* max_addresses */ 2500, /* max_pct */ 23, /* network */ std::nullopt).size(), 1U); // Test: Ensure GetAddr still returns 23% when addrman has many addrs. for (unsigned int i = 1; i < (8 * 256); i++) { int octet1 = i % 256; int octet2 = i >> 8 % 256; std::string strAddr = ToString(octet1) + "." + ToString(octet2) + ".1.23"; CAddress addr = CAddress(ResolveService(strAddr), NODE_NONE); // Ensure that for all addrs in addrman, isTerrible == false. addr.nTime = GetAdjustedTime(); addrman.Add(addr, ResolveIP(strAddr)); if (i % 8 == 0) addrman.Good(addr); } std::vector vAddr = addrman.GetAddr(/* max_addresses */ 2500, /* max_pct */ 23, /* network */ std::nullopt); size_t percent23 = (addrman.size() * 23) / 100; BOOST_CHECK_EQUAL(vAddr.size(), percent23); BOOST_CHECK_EQUAL(vAddr.size(), 461U); // (Addrman.size() < number of addresses added) due to address collisions. BOOST_CHECK_EQUAL(addrman.size(), 2006U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_tried_bucket_legacy) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.1.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.1.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.1.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); std::vector asmap; // use /16 BOOST_CHECK_EQUAL(info1.GetTriedBucket(nKey1, asmap), 40); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetTriedBucket(nKey1, asmap) != info1.GetTriedBucket(nKey2, asmap)); // Test: Two addresses with same IP but different ports can map to // different buckets because they have different keys. CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK(info1.GetTriedBucket(nKey1, asmap) != info2.GetTriedBucket(nKey1, asmap)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + ToString(i)), NODE_NONE), ResolveIP("250.1.1." + ToString(i))); int bucket = infoi.GetTriedBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the same /16 prefix should // never get more than 8 buckets with legacy grouping BOOST_CHECK_EQUAL(buckets.size(), 8U); buckets.clear(); for (int j = 0; j < 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250." + ToString(j) + ".1.1"), NODE_NONE), ResolveIP("250." + ToString(j) + ".1.1")); int bucket = infoj.GetTriedBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different /16 prefix should map to more than // 8 buckets with legacy grouping BOOST_CHECK_EQUAL(buckets.size(), 160U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_new_bucket_legacy) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); std::vector asmap; // use /16 // Test: Make sure the buckets are what we expect BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, asmap), 786); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, source1, asmap), 786); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetNewBucket(nKey1, asmap) != info1.GetNewBucket(nKey2, asmap)); // Test: Ports should not affect bucket placement in the addr CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, asmap), info2.GetNewBucket(nKey1, asmap)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + ToString(i)), NODE_NONE), ResolveIP("250.1.1." + ToString(i))); int bucket = infoi.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the same group (\16 prefix for IPv4) should // always map to the same bucket. BOOST_CHECK_EQUAL(buckets.size(), 1U); buckets.clear(); for (int j = 0; j < 4 * 255; j++) { CAddrInfo infoj = CAddrInfo(CAddress( ResolveService( ToString(250 + (j / 255)) + "." + ToString(j % 256) + ".1.1"), NODE_NONE), ResolveIP("251.4.1.1")); int bucket = infoj.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the same source groups should map to NO MORE // than 64 buckets. BOOST_CHECK(buckets.size() <= 64); buckets.clear(); for (int p = 0; p < 255; p++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250.1.1.1"), NODE_NONE), ResolveIP("250." + ToString(p) + ".1.1")); int bucket = infoj.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different source groups should map to MORE // than 64 buckets. BOOST_CHECK(buckets.size() > 64); } // The following three test cases use asmap.raw // We use an artificial minimal mock mapping // 250.0.0.0/8 AS1000 // 101.1.0.0/16 AS1 // 101.2.0.0/16 AS2 // 101.3.0.0/16 AS3 // 101.4.0.0/16 AS4 // 101.5.0.0/16 AS5 // 101.6.0.0/16 AS6 // 101.7.0.0/16 AS7 // 101.8.0.0/16 AS8 BOOST_AUTO_TEST_CASE(caddrinfo_get_tried_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.1.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.1.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.1.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); std::vector asmap = FromBytes(asmap_raw, sizeof(asmap_raw) * 8); BOOST_CHECK_EQUAL(info1.GetTriedBucket(nKey1, asmap), 236); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetTriedBucket(nKey1, asmap) != info1.GetTriedBucket(nKey2, asmap)); // Test: Two addresses with same IP but different ports can map to // different buckets because they have different keys. CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK(info1.GetTriedBucket(nKey1, asmap) != info2.GetTriedBucket(nKey1, asmap)); std::set buckets; for (int j = 0; j < 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("101." + ToString(j) + ".1.1"), NODE_NONE), ResolveIP("101." + ToString(j) + ".1.1")); int bucket = infoj.GetTriedBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different /16 prefix MAY map to more than // 8 buckets. BOOST_CHECK(buckets.size() > 8); buckets.clear(); for (int j = 0; j < 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250." + ToString(j) + ".1.1"), NODE_NONE), ResolveIP("250." + ToString(j) + ".1.1")); int bucket = infoj.GetTriedBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different /16 prefix MAY NOT map to more than // 8 buckets. BOOST_CHECK(buckets.size() == 8); } BOOST_AUTO_TEST_CASE(caddrinfo_get_new_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); std::vector asmap = FromBytes(asmap_raw, sizeof(asmap_raw) * 8); // Test: Make sure the buckets are what we expect BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, asmap), 795); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, source1, asmap), 795); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetNewBucket(nKey1, asmap) != info1.GetNewBucket(nKey2, asmap)); // Test: Ports should not affect bucket placement in the addr CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, asmap), info2.GetNewBucket(nKey1, asmap)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + ToString(i)), NODE_NONE), ResolveIP("250.1.1." + ToString(i))); int bucket = infoi.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the same /16 prefix // usually map to the same bucket. BOOST_CHECK_EQUAL(buckets.size(), 1U); buckets.clear(); for (int j = 0; j < 4 * 255; j++) { CAddrInfo infoj = CAddrInfo(CAddress( ResolveService( ToString(250 + (j / 255)) + "." + ToString(j % 256) + ".1.1"), NODE_NONE), ResolveIP("251.4.1.1")); int bucket = infoj.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the same source /16 prefix should not map to more // than 64 buckets. BOOST_CHECK(buckets.size() <= 64); buckets.clear(); for (int p = 0; p < 255; p++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250.1.1.1"), NODE_NONE), ResolveIP("101." + ToString(p) + ".1.1")); int bucket = infoj.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different source /16 prefixes usually map to MORE // than 1 bucket. BOOST_CHECK(buckets.size() > 1); buckets.clear(); for (int p = 0; p < 255; p++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250.1.1.1"), NODE_NONE), ResolveIP("250." + ToString(p) + ".1.1")); int bucket = infoj.GetNewBucket(nKey1, asmap); buckets.insert(bucket); } // Test: IP addresses in the different source /16 prefixes sometimes map to NO MORE // than 1 bucket. BOOST_CHECK(buckets.size() == 1); } BOOST_AUTO_TEST_CASE(addrman_serialization) { std::vector asmap1 = FromBytes(asmap_raw, sizeof(asmap_raw) * 8); CAddrManTest addrman_asmap1(true, asmap1); CAddrManTest addrman_asmap1_dup(true, asmap1); CAddrManTest addrman_noasmap; CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); CAddress addr = CAddress(ResolveService("250.1.1.1"), NODE_NONE); CNetAddr default_source; addrman_asmap1.Add(addr, default_source); stream << addrman_asmap1; // serizalizing/deserializing addrman with the same asmap stream >> addrman_asmap1_dup; std::pair bucketAndEntry_asmap1 = addrman_asmap1.GetBucketAndEntry(addr); std::pair bucketAndEntry_asmap1_dup = addrman_asmap1_dup.GetBucketAndEntry(addr); BOOST_CHECK(bucketAndEntry_asmap1.second != -1); BOOST_CHECK(bucketAndEntry_asmap1_dup.second != -1); BOOST_CHECK(bucketAndEntry_asmap1.first == bucketAndEntry_asmap1_dup.first); BOOST_CHECK(bucketAndEntry_asmap1.second == bucketAndEntry_asmap1_dup.second); // deserializing asmaped peers.dat to non-asmaped addrman stream << addrman_asmap1; stream >> addrman_noasmap; std::pair bucketAndEntry_noasmap = addrman_noasmap.GetBucketAndEntry(addr); BOOST_CHECK(bucketAndEntry_noasmap.second != -1); BOOST_CHECK(bucketAndEntry_asmap1.first != bucketAndEntry_noasmap.first); BOOST_CHECK(bucketAndEntry_asmap1.second != bucketAndEntry_noasmap.second); // deserializing non-asmaped peers.dat to asmaped addrman addrman_asmap1.Clear(); addrman_noasmap.Clear(); addrman_noasmap.Add(addr, default_source); stream << addrman_noasmap; stream >> addrman_asmap1; std::pair bucketAndEntry_asmap1_deser = addrman_asmap1.GetBucketAndEntry(addr); BOOST_CHECK(bucketAndEntry_asmap1_deser.second != -1); BOOST_CHECK(bucketAndEntry_asmap1_deser.first != bucketAndEntry_noasmap.first); BOOST_CHECK(bucketAndEntry_asmap1_deser.first == bucketAndEntry_asmap1_dup.first); BOOST_CHECK(bucketAndEntry_asmap1_deser.second == bucketAndEntry_asmap1_dup.second); // used to map to different buckets, now maps to the same bucket. addrman_asmap1.Clear(); addrman_noasmap.Clear(); CAddress addr1 = CAddress(ResolveService("250.1.1.1"), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.2.1.1"), NODE_NONE); addrman_noasmap.Add(addr, default_source); addrman_noasmap.Add(addr2, default_source); std::pair bucketAndEntry_noasmap_addr1 = addrman_noasmap.GetBucketAndEntry(addr1); std::pair bucketAndEntry_noasmap_addr2 = addrman_noasmap.GetBucketAndEntry(addr2); BOOST_CHECK(bucketAndEntry_noasmap_addr1.first != bucketAndEntry_noasmap_addr2.first); BOOST_CHECK(bucketAndEntry_noasmap_addr1.second != bucketAndEntry_noasmap_addr2.second); stream << addrman_noasmap; stream >> addrman_asmap1; std::pair bucketAndEntry_asmap1_deser_addr1 = addrman_asmap1.GetBucketAndEntry(addr1); std::pair bucketAndEntry_asmap1_deser_addr2 = addrman_asmap1.GetBucketAndEntry(addr2); BOOST_CHECK(bucketAndEntry_asmap1_deser_addr1.first == bucketAndEntry_asmap1_deser_addr2.first); BOOST_CHECK(bucketAndEntry_asmap1_deser_addr1.second != bucketAndEntry_asmap1_deser_addr2.second); } BOOST_AUTO_TEST_CASE(remove_invalid) { // Confirm that invalid addresses are ignored in unserialization. CAddrManTest addrman; CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); const CAddress new1{ResolveService("5.5.5.5"), NODE_NONE}; const CAddress new2{ResolveService("6.6.6.6"), NODE_NONE}; const CAddress tried1{ResolveService("7.7.7.7"), NODE_NONE}; const CAddress tried2{ResolveService("8.8.8.8"), NODE_NONE}; addrman.Add({new1, tried1, new2, tried2}, CNetAddr{}); addrman.Good(tried1); addrman.Good(tried2); BOOST_REQUIRE_EQUAL(addrman.size(), 4); stream << addrman; const std::string str{stream.str()}; size_t pos; const char new2_raw[]{6, 6, 6, 6}; const uint8_t new2_raw_replacement[]{0, 0, 0, 0}; // 0.0.0.0 is !IsValid() pos = str.find(new2_raw, 0, sizeof(new2_raw)); BOOST_REQUIRE(pos != std::string::npos); BOOST_REQUIRE(pos + sizeof(new2_raw_replacement) <= stream.size()); memcpy(stream.data() + pos, new2_raw_replacement, sizeof(new2_raw_replacement)); const char tried2_raw[]{8, 8, 8, 8}; const uint8_t tried2_raw_replacement[]{255, 255, 255, 255}; // 255.255.255.255 is !IsValid() pos = str.find(tried2_raw, 0, sizeof(tried2_raw)); BOOST_REQUIRE(pos != std::string::npos); BOOST_REQUIRE(pos + sizeof(tried2_raw_replacement) <= stream.size()); memcpy(stream.data() + pos, tried2_raw_replacement, sizeof(tried2_raw_replacement)); addrman.Clear(); stream >> addrman; BOOST_CHECK_EQUAL(addrman.size(), 2); } BOOST_AUTO_TEST_CASE(addrman_selecttriedcollision) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1."+ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collisions yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Ensure Good handles duplicates well. for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1."+ToString(i)); addrman.Good(addr); BOOST_CHECK(addrman.size() == 22); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } } BOOST_AUTO_TEST_CASE(addrman_noevict) { CAddrManTest addrman; // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1."+ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr23 = ResolveService("250.1.1.23"); BOOST_CHECK(addrman.Add(CAddress(addr23, NODE_NONE), source)); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 23); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.19:0"); // 23 should be discarded and 19 not evicted. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Lets create two collisions. for (unsigned int i = 24; i < 33; i++) { CService addr = ResolveService("250.1.1."+ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Cause a collision. CService addr33 = ResolveService("250.1.1.33"); BOOST_CHECK(addrman.Add(CAddress(addr33, NODE_NONE), source)); addrman.Good(addr33); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.27:0"); // Cause a second collision. BOOST_CHECK(!addrman.Add(CAddress(addr23, NODE_NONE), source)); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() != "[::]:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_CASE(addrman_evictionworks) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1."+ToString(i)); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr = ResolveService("250.1.1.23"); BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.size() == 23); CAddrInfo info = addrman.SelectTriedCollision(); BOOST_CHECK(info.ToString() == "250.1.1.19:0"); // Ensure test of address fails, so that it is evicted. addrman.SimConnFail(info); // Should swap 23 for 19. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If 23 was swapped for 19, then this should cause no collisions. BOOST_CHECK(!addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If we insert 19 is should collide with 23. CService addr19 = ResolveService("250.1.1.19"); BOOST_CHECK(!addrman.Add(CAddress(addr19, NODE_NONE), source)); addrman.Good(addr19); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.23:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_CASE(reset_i2p_ports) { CAddrManTest addrman1; CAddrManTest addrman2; const uint32_t good_time{static_cast(GetAdjustedTime())}; constexpr uint16_t port = 8333; // Has its port changed, will be re-positioned within the same bucket in vvNew. const CAddress i2p_new1{ ResolveService("72l3ucjkuscrbiiepoehuwqgknyzgo7zuix5ty4puwrkyhtmnsga.b32.i2p", port), NODE_NONE, good_time}; // Has its port changed, will not be re-positioned in vvNew because ports 0 and 10075 result in // the same bucket position. const CAddress i2p_new2{ ResolveService("gehtac45oaghz54ypyopim64mql7oad2bqclla74l6tfeolzmodq.b32.i2p", 10075), NODE_NONE, good_time}; // Remains unchanged, port is already as it should be. const CAddress i2p_new3{ ResolveService("c4gfnttsuwqomiygupdqqqyy5y5emnk5c73hrfvatri67prd7vyq.b32.i2p", I2P_SAM31_PORT), NODE_NONE, good_time}; // Has its port changed, re-positioning in vvNew will cause i2p_new3 to be evicted. const CAddress i2p_new4{ ResolveService("c4cbbkn46qxftwja53pxiykntegfyfjqtnzbm6iv6r5mungmqgmq.b32.i2p", port), NODE_NONE, good_time}; // Remains unchanged. const CAddress ipv4_new{ResolveService("1.2.3.4", port), NODE_NONE, good_time}; // Has its port changed, will be re-positioned in vvTried. const CAddress i2p_tried1{ ResolveService("h3r6bkn46qxftwja53pxiykntegfyfjqtnzbm6iv6r5mungmqgmq.b32.i2p", port), NODE_NONE, good_time}; // Has its port changed, will not be re-positioned in vvTried because ports 0 and 10537 // result in the same position (bucket, i). const CAddress i2p_tried2{ ResolveService("pjs7or2ctvteeo5tu4bwyrtydeuhqhvdprtujn4daxr75jpebjxa.b32.i2p", 10537), NODE_NONE, good_time}; // Remains unchanged, port is already as it should be. const CAddress i2p_tried3{ ResolveService("hnbbyjpxx54623l555sta7pocy3se4sdgmuebi5k6reesz5rjp6q.b32.i2p", I2P_SAM31_PORT), NODE_NONE, good_time}; // Has its port changed, re-positioning in vvTried will cause i2p_tried3 to be moved to vvNew. const CAddress i2p_tried4{ ResolveService("hna37nqr3ahkqv62cuqfwgtneekvvpnuc4i4f6yo7tpoqjswvcwa.b32.i2p", port), NODE_NONE, good_time}; // Remains unchanged. const CAddress ipv4_tried{ResolveService("2.3.4.5", port), NODE_NONE, good_time}; const CNetAddr source; CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); addrman1.Add(i2p_new1, source); addrman1.Add(i2p_new2, source); addrman1.Add(i2p_new3, source); addrman1.Add(i2p_new4, source); addrman1.Add(ipv4_new, source); addrman1.Add(i2p_tried1, source); addrman1.Good(i2p_tried1); addrman1.Add(i2p_tried2, source); addrman1.Good(i2p_tried2); addrman1.Add(i2p_tried3, source); addrman1.Good(i2p_tried3); addrman1.Add(i2p_tried4, source); addrman1.Good(i2p_tried4); addrman1.Add(ipv4_tried, source); addrman1.Good(ipv4_tried); stream << addrman1; stream >> addrman2; const size_t max_addresses{0}; const size_t max_pct{0}; auto addresses = addrman2.GetAddr(max_addresses, max_pct, NET_I2P); BOOST_REQUIRE_EQUAL(addresses.size(), 7UL); std::sort(addresses.begin(), addresses.end()); // Just some deterministic order. BOOST_CHECK_EQUAL(addresses[0].ToStringIP(), i2p_new4.ToStringIP()); BOOST_CHECK_EQUAL(addresses[0].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[1].ToStringIP(), i2p_new2.ToStringIP()); BOOST_CHECK_EQUAL(addresses[1].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[2].ToStringIP(), i2p_tried4.ToStringIP()); BOOST_CHECK_EQUAL(addresses[2].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[3].ToStringIP(), i2p_tried3.ToStringIP()); BOOST_CHECK_EQUAL(addresses[3].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[4].ToStringIP(), i2p_tried1.ToStringIP()); BOOST_CHECK_EQUAL(addresses[4].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[5].ToStringIP(), i2p_tried2.ToStringIP()); BOOST_CHECK_EQUAL(addresses[5].GetPort(), I2P_SAM31_PORT); BOOST_CHECK_EQUAL(addresses[6].ToStringIP(), i2p_new1.ToStringIP()); BOOST_CHECK_EQUAL(addresses[6].GetPort(), I2P_SAM31_PORT); addresses = addrman2.GetAddr(max_addresses, max_pct, NET_IPV4); BOOST_REQUIRE_EQUAL(addresses.size(), 2UL); std::sort(addresses.begin(), addresses.end()); // Just some deterministic order. BOOST_CHECK_EQUAL(addresses[0].ToStringIPPort(), ipv4_new.ToStringIPPort()); BOOST_CHECK_EQUAL(addresses[1].ToStringIPPort(), ipv4_tried.ToStringIPPort()); } BOOST_AUTO_TEST_SUITE_END()