// Copyright (c) 2011-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_LOCKORDER // // Early deadlock detection. // Problem being solved: // Thread 1 locks A, then B, then C // Thread 2 locks D, then C, then A // --> may result in deadlock between the two threads, depending on when they run. // Solution implemented here: // Keep track of pairs of locks: (A before B), (A before C), etc. // Complain if any thread tries to lock in a different order. // struct CLockLocation { CLockLocation( const char* pszName, const char* pszFile, int nLine, bool fTryIn, const std::string& thread_name) : fTry(fTryIn), mutexName(pszName), sourceFile(pszFile), m_thread_name(thread_name), sourceLine(nLine) {} std::string ToString() const { return strprintf( "'%s' in %s:%s%s (in thread '%s')", mutexName, sourceFile, sourceLine, (fTry ? " (TRY)" : ""), m_thread_name); } std::string Name() const { return mutexName; } private: bool fTry; std::string mutexName; std::string sourceFile; const std::string& m_thread_name; int sourceLine; }; using LockStackItem = std::pair; using LockStack = std::vector; using LockStacks = std::unordered_map; using LockPair = std::pair; using LockOrders = std::map; using InvLockOrders = std::set; struct LockData { LockStacks m_lock_stacks; LockOrders lockorders; InvLockOrders invlockorders; std::mutex dd_mutex; }; LockData& GetLockData() { // This approach guarantees that the object is not destroyed until after its last use. // The operating system automatically reclaims all the memory in a program's heap when that program exits. // Since the ~LockData() destructor is never called, the LockData class and all // its subclasses must have implicitly-defined destructors. static LockData& lock_data = *new LockData(); return lock_data; } static void potential_deadlock_detected(const LockPair& mismatch, const LockStack& s1, const LockStack& s2) { LogPrintf("POTENTIAL DEADLOCK DETECTED\n"); LogPrintf("Previous lock order was:\n"); for (const LockStackItem& i : s1) { std::string prefix{}; if (i.first == mismatch.first) { prefix = " (1)"; } if (i.first == mismatch.second) { prefix = " (2)"; } LogPrintf("%s %s\n", prefix, i.second.ToString()); } std::string mutex_a, mutex_b; LogPrintf("Current lock order is:\n"); for (const LockStackItem& i : s2) { std::string prefix{}; if (i.first == mismatch.first) { prefix = " (1)"; mutex_a = i.second.Name(); } if (i.first == mismatch.second) { prefix = " (2)"; mutex_b = i.second.Name(); } LogPrintf("%s %s\n", prefix, i.second.ToString()); } if (g_debug_lockorder_abort) { tfm::format(std::cerr, "Assertion failed: detected inconsistent lock order for %s, details in debug log.\n", s2.back().second.ToString()); abort(); } throw std::logic_error(strprintf("potential deadlock detected: %s -> %s -> %s", mutex_b, mutex_a, mutex_b)); } static void double_lock_detected(const void* mutex, const LockStack& lock_stack) { LogPrintf("DOUBLE LOCK DETECTED\n"); LogPrintf("Lock order:\n"); for (const LockStackItem& i : lock_stack) { std::string prefix{}; if (i.first == mutex) { prefix = " (*)"; } LogPrintf("%s %s\n", prefix, i.second.ToString()); } if (g_debug_lockorder_abort) { tfm::format(std::cerr, "Assertion failed: detected double lock for %s, details in debug log.\n", lock_stack.back().second.ToString()); abort(); } throw std::logic_error("double lock detected"); } template static void push_lock(MutexType* c, const CLockLocation& locklocation) { constexpr bool is_recursive_mutex = std::is_base_of::value || std::is_base_of::value; LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); LockStack& lock_stack = lockdata.m_lock_stacks[std::this_thread::get_id()]; lock_stack.emplace_back(c, locklocation); for (size_t j = 0; j < lock_stack.size() - 1; ++j) { const LockStackItem& i = lock_stack[j]; if (i.first == c) { if (is_recursive_mutex) { break; } // It is not a recursive mutex and it appears in the stack two times: // at position `j` and at the end (which we added just before this loop). // Can't allow locking the same (non-recursive) mutex two times from the // same thread as that results in an undefined behavior. auto lock_stack_copy = lock_stack; lock_stack.pop_back(); double_lock_detected(c, lock_stack_copy); // double_lock_detected() does not return. } const LockPair p1 = std::make_pair(i.first, c); if (lockdata.lockorders.count(p1)) continue; const LockPair p2 = std::make_pair(c, i.first); if (lockdata.lockorders.count(p2)) { auto lock_stack_copy = lock_stack; lock_stack.pop_back(); potential_deadlock_detected(p1, lockdata.lockorders[p2], lock_stack_copy); // potential_deadlock_detected() does not return. } lockdata.lockorders.emplace(p1, lock_stack); lockdata.invlockorders.insert(p2); } } static void pop_lock() { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); LockStack& lock_stack = lockdata.m_lock_stacks[std::this_thread::get_id()]; lock_stack.pop_back(); if (lock_stack.empty()) { lockdata.m_lock_stacks.erase(std::this_thread::get_id()); } } template void EnterCritical(const char* pszName, const char* pszFile, int nLine, MutexType* cs, bool fTry) { push_lock(cs, CLockLocation(pszName, pszFile, nLine, fTry, util::ThreadGetInternalName())); } template void EnterCritical(const char*, const char*, int, Mutex*, bool); template void EnterCritical(const char*, const char*, int, RecursiveMutex*, bool); template void EnterCritical(const char*, const char*, int, std::mutex*, bool); template void EnterCritical(const char*, const char*, int, std::recursive_mutex*, bool); void CheckLastCritical(void* cs, std::string& lockname, const char* guardname, const char* file, int line) { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); const LockStack& lock_stack = lockdata.m_lock_stacks[std::this_thread::get_id()]; if (!lock_stack.empty()) { const auto& lastlock = lock_stack.back(); if (lastlock.first == cs) { lockname = lastlock.second.Name(); return; } } LogPrintf("INCONSISTENT LOCK ORDER DETECTED\n"); LogPrintf("Current lock order (least recent first) is:\n"); for (const LockStackItem& i : lock_stack) { LogPrintf(" %s\n", i.second.ToString()); } if (g_debug_lockorder_abort) { tfm::format(std::cerr, "%s:%s %s was not most recent critical section locked, details in debug log.\n", file, line, guardname); abort(); } throw std::logic_error(strprintf("%s was not most recent critical section locked", guardname)); } void LeaveCritical() { pop_lock(); } std::string LocksHeld() { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); const LockStack& lock_stack = lockdata.m_lock_stacks[std::this_thread::get_id()]; std::string result; for (const LockStackItem& i : lock_stack) result += i.second.ToString() + std::string("\n"); return result; } static bool LockHeld(void* mutex) { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); const LockStack& lock_stack = lockdata.m_lock_stacks[std::this_thread::get_id()]; for (const LockStackItem& i : lock_stack) { if (i.first == mutex) return true; } return false; } template void AssertLockHeldInternal(const char* pszName, const char* pszFile, int nLine, MutexType* cs) { if (LockHeld(cs)) return; tfm::format(std::cerr, "Assertion failed: lock %s not held in %s:%i; locks held:\n%s", pszName, pszFile, nLine, LocksHeld()); abort(); } template void AssertLockHeldInternal(const char*, const char*, int, Mutex*); template void AssertLockHeldInternal(const char*, const char*, int, RecursiveMutex*); template void AssertLockNotHeldInternal(const char* pszName, const char* pszFile, int nLine, MutexType* cs) { if (!LockHeld(cs)) return; tfm::format(std::cerr, "Assertion failed: lock %s held in %s:%i; locks held:\n%s", pszName, pszFile, nLine, LocksHeld()); abort(); } template void AssertLockNotHeldInternal(const char*, const char*, int, Mutex*); template void AssertLockNotHeldInternal(const char*, const char*, int, RecursiveMutex*); void DeleteLock(void* cs) { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); const LockPair item = std::make_pair(cs, nullptr); LockOrders::iterator it = lockdata.lockorders.lower_bound(item); while (it != lockdata.lockorders.end() && it->first.first == cs) { const LockPair invitem = std::make_pair(it->first.second, it->first.first); lockdata.invlockorders.erase(invitem); lockdata.lockorders.erase(it++); } InvLockOrders::iterator invit = lockdata.invlockorders.lower_bound(item); while (invit != lockdata.invlockorders.end() && invit->first == cs) { const LockPair invinvitem = std::make_pair(invit->second, invit->first); lockdata.lockorders.erase(invinvitem); lockdata.invlockorders.erase(invit++); } } bool LockStackEmpty() { LockData& lockdata = GetLockData(); std::lock_guard lock(lockdata.dd_mutex); const auto it = lockdata.m_lock_stacks.find(std::this_thread::get_id()); if (it == lockdata.m_lock_stacks.end()) { return true; } return it->second.empty(); } bool g_debug_lockorder_abort = true; #endif /* DEBUG_LOCKORDER */