// Copyright (c) 2018-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SPAN_H #define BITCOIN_SPAN_H #include <type_traits> #include <cstddef> #include <algorithm> #include <assert.h> #ifdef DEBUG #define CONSTEXPR_IF_NOT_DEBUG #define ASSERT_IF_DEBUG(x) assert((x)) #else #define CONSTEXPR_IF_NOT_DEBUG constexpr #define ASSERT_IF_DEBUG(x) #endif #if defined(__clang__) #if __has_attribute(lifetimebound) #define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]] #else #define SPAN_ATTR_LIFETIMEBOUND #endif #else #define SPAN_ATTR_LIFETIMEBOUND #endif /** A Span is an object that can refer to a contiguous sequence of objects. * * This file implements a subset of C++20's std::span. It can be considered * temporary compatibility code until C++20 and is designed to be a * self-contained abstraction without depending on other project files. For this * reason, Clang lifetimebound is defined here instead of including * <attributes.h>, which also defines it. * * Things to be aware of when writing code that deals with Spans: * * - Similar to references themselves, Spans are subject to reference lifetime * issues. The user is responsible for making sure the objects pointed to by * a Span live as long as the Span is used. For example: * * std::vector<int> vec{1,2,3,4}; * Span<int> sp(vec); * vec.push_back(5); * printf("%i\n", sp.front()); // UB! * * may exhibit undefined behavior, as increasing the size of a vector may * invalidate references. * * - One particular pitfall is that Spans can be constructed from temporaries, * but this is unsafe when the Span is stored in a variable, outliving the * temporary. For example, this will compile, but exhibits undefined behavior: * * Span<const int> sp(std::vector<int>{1, 2, 3}); * printf("%i\n", sp.front()); // UB! * * The lifetime of the vector ends when the statement it is created in ends. * Thus the Span is left with a dangling reference, and using it is undefined. * * - Due to Span's automatic creation from range-like objects (arrays, and data * types that expose a data() and size() member function), functions that * accept a Span as input parameter can be called with any compatible * range-like object. For example, this works: * * void Foo(Span<const int> arg); * * Foo(std::vector<int>{1, 2, 3}); // Works * * This is very useful in cases where a function truly does not care about the * container, and only about having exactly a range of elements. However it * may also be surprising to see automatic conversions in this case. * * When a function accepts a Span with a mutable element type, it will not * accept temporaries; only variables or other references. For example: * * void FooMut(Span<int> arg); * * FooMut(std::vector<int>{1, 2, 3}); // Does not compile * std::vector<int> baz{1, 2, 3}; * FooMut(baz); // Works * * This is similar to how functions that take (non-const) lvalue references * as input cannot accept temporaries. This does not work either: * * void FooVec(std::vector<int>& arg); * FooVec(std::vector<int>{1, 2, 3}); // Does not compile * * The idea is that if a function accepts a mutable reference, a meaningful * result will be present in that variable after the call. Passing a temporary * is useless in that context. */ template<typename C> class Span { C* m_data; std::size_t m_size{0}; template <class T> struct is_Span_int : public std::false_type {}; template <class T> struct is_Span_int<Span<T>> : public std::true_type {}; template <class T> struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{}; public: constexpr Span() noexcept : m_data(nullptr) {} /** Construct a span from a begin pointer and a size. * * This implements a subset of the iterator-based std::span constructor in C++20, * which is hard to implement without std::address_of. */ template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {} /** Construct a span from a begin and end pointer. * * This implements a subset of the iterator-based std::span constructor in C++20, * which is hard to implement without std::address_of. */ template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin) { ASSERT_IF_DEBUG(end >= begin); } /** Implicit conversion of spans between compatible types. * * Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type * C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding * C++20 std::span constructor. * * For example this means that a Span<T> can be converted into a Span<const T>. */ template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0> constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {} /** Default copy constructor. */ constexpr Span(const Span&) noexcept = default; /** Default assignment operator. */ Span& operator=(const Span& other) noexcept = default; /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */ template <int N> constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {} /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...). * * This implements a subset of the functionality provided by the C++20 std::span range-based constructor. * * To prevent surprises, only Spans for constant value types are supported when passing in temporaries. * Note that this restriction does not exist when converting arrays or other Spans (see above). */ template <typename V> constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND, typename std::enable_if<!is_Span<V>::value && std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value && std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) : m_data(other.data()), m_size(other.size()){} template <typename V> constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND, typename std::enable_if<!is_Span<V>::value && std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value && std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) : m_data(other.data()), m_size(other.size()){} constexpr C* data() const noexcept { return m_data; } constexpr C* begin() const noexcept { return m_data; } constexpr C* end() const noexcept { return m_data + m_size; } CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept { ASSERT_IF_DEBUG(size() > 0); return m_data[0]; } CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept { ASSERT_IF_DEBUG(size() > 0); return m_data[m_size - 1]; } constexpr std::size_t size() const noexcept { return m_size; } constexpr std::size_t size_bytes() const noexcept { return sizeof(C) * m_size; } constexpr bool empty() const noexcept { return size() == 0; } CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept { ASSERT_IF_DEBUG(size() > pos); return m_data[pos]; } CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept { ASSERT_IF_DEBUG(size() >= offset); return Span<C>(m_data + offset, m_size - offset); } CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept { ASSERT_IF_DEBUG(size() >= offset + count); return Span<C>(m_data + offset, count); } CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept { ASSERT_IF_DEBUG(size() >= count); return Span<C>(m_data, count); } CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept { ASSERT_IF_DEBUG(size() >= count); return Span<C>(m_data + m_size - count, count); } friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); } friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); } friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); } friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); } friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); } friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); } template <typename O> friend class Span; }; // Deduction guides for Span // For the pointer/size based and iterator based constructor: template <typename T, typename EndOrSize> Span(T*, EndOrSize) -> Span<T>; // For the array constructor: template <typename T, std::size_t N> Span(T (&)[N]) -> Span<T>; // For the temporaries/rvalue references constructor, only supporting const output. template <typename T> Span(T&&) -> Span<std::enable_if_t<!std::is_lvalue_reference_v<T>, const std::remove_pointer_t<decltype(std::declval<T&&>().data())>>>; // For (lvalue) references, supporting mutable output. template <typename T> Span(T&) -> Span<std::remove_pointer_t<decltype(std::declval<T&>().data())>>; /** Pop the last element off a span, and return a reference to that element. */ template <typename T> T& SpanPopBack(Span<T>& span) { size_t size = span.size(); ASSERT_IF_DEBUG(size > 0); T& back = span[size - 1]; span = Span<T>(span.data(), size - 1); return back; } //! Convert a data pointer to a std::byte data pointer. //! Where possible, please use the safer AsBytes helpers. inline const std::byte* AsBytePtr(const void* data) { return reinterpret_cast<const std::byte*>(data); } inline std::byte* AsBytePtr(void* data) { return reinterpret_cast<std::byte*>(data); } // From C++20 as_bytes and as_writeable_bytes template <typename T> Span<const std::byte> AsBytes(Span<T> s) noexcept { return {AsBytePtr(s.data()), s.size_bytes()}; } template <typename T> Span<std::byte> AsWritableBytes(Span<T> s) noexcept { return {AsBytePtr(s.data()), s.size_bytes()}; } template <typename V> Span<const std::byte> MakeByteSpan(V&& v) noexcept { return AsBytes(Span{std::forward<V>(v)}); } template <typename V> Span<std::byte> MakeWritableByteSpan(V&& v) noexcept { return AsWritableBytes(Span{std::forward<V>(v)}); } // Helper functions to safely cast to unsigned char pointers. inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; } inline unsigned char* UCharCast(unsigned char* c) { return c; } inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; } inline const unsigned char* UCharCast(const unsigned char* c) { return c; } inline const unsigned char* UCharCast(const std::byte* c) { return reinterpret_cast<const unsigned char*>(c); } // Helper function to safely convert a Span to a Span<[const] unsigned char>. template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; } /** Like the Span constructor, but for (const) unsigned char member types only. Only works for (un)signed char containers. */ template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(Span{std::forward<V>(v)})) { return UCharSpanCast(Span{std::forward<V>(v)}); } #endif // BITCOIN_SPAN_H