// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SERIALIZE_H #define BITCOIN_SERIALIZE_H #include "allocators.h" #include #include #include #include #include #include #include #include #include #include #include #include class CAutoFile; class CDataStream; class CScript; static const unsigned int MAX_SIZE = 0x02000000; // Used to bypass the rule against non-const reference to temporary // where it makes sense with wrappers such as CFlatData or CTxDB template inline T& REF(const T& val) { return const_cast(val); } // Used to acquire a non-const pointer "this" to generate bodies // of const serialization operations from a template template inline T* NCONST_PTR(const T* val) { return const_cast(val); } /** Get begin pointer of vector (non-const version). * @note These functions avoid the undefined case of indexing into an empty * vector, as well as that of indexing after the end of the vector. */ template inline T* begin_ptr(std::vector& v) { return v.empty() ? NULL : &v[0]; } /** Get begin pointer of vector (const version) */ template inline const T* begin_ptr(const std::vector& v) { return v.empty() ? NULL : &v[0]; } /** Get end pointer of vector (non-const version) */ template inline T* end_ptr(std::vector& v) { return v.empty() ? NULL : (&v[0] + v.size()); } /** Get end pointer of vector (const version) */ template inline const T* end_ptr(const std::vector& v) { return v.empty() ? NULL : (&v[0] + v.size()); } ///////////////////////////////////////////////////////////////// // // Templates for serializing to anything that looks like a stream, // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t) // enum { // primary actions SER_NETWORK = (1 << 0), SER_DISK = (1 << 1), SER_GETHASH = (1 << 2), }; #define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action)) /* Implement three methods for serializable objects. These are actually wrappers over * "SerializationOp" template, which implements the body of each class' serialization * code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be * added as members. */ #define ADD_SERIALIZE_METHODS \ size_t GetSerializeSize(int nType, int nVersion) const { \ CSizeComputer s(nType, nVersion); \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\ return s.size(); \ } \ template \ void Serialize(Stream& s, int nType, int nVersion) const { \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\ } \ template \ void Unserialize(Stream& s, int nType, int nVersion) { \ SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \ } // // Basic types // #define WRITEDATA(s, obj) s.write((char*)&(obj), sizeof(obj)) #define READDATA(s, obj) s.read((char*)&(obj), sizeof(obj)) inline unsigned int GetSerializeSize(char a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(signed char a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(unsigned char a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(signed short a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(unsigned short a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(signed int a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(unsigned int a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(signed long a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(unsigned long a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(signed long long a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(unsigned long long a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(float a, int, int=0) { return sizeof(a); } inline unsigned int GetSerializeSize(double a, int, int=0) { return sizeof(a); } template inline void Serialize(Stream& s, char a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, signed char a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, unsigned char a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, signed short a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, unsigned short a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, signed int a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, unsigned int a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, signed long a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, unsigned long a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, signed long long a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, unsigned long long a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, float a, int, int=0) { WRITEDATA(s, a); } template inline void Serialize(Stream& s, double a, int, int=0) { WRITEDATA(s, a); } template inline void Unserialize(Stream& s, char& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, signed char& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, unsigned char& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, signed short& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, unsigned short& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, signed int& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, unsigned int& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, signed long& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, unsigned long& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, signed long long& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, unsigned long long& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, float& a, int, int=0) { READDATA(s, a); } template inline void Unserialize(Stream& s, double& a, int, int=0) { READDATA(s, a); } inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); } template inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; WRITEDATA(s, f); } template inline void Unserialize(Stream& s, bool& a, int, int=0) { char f; READDATA(s, f); a=f; } // // Compact size // size < 253 -- 1 byte // size <= USHRT_MAX -- 3 bytes (253 + 2 bytes) // size <= UINT_MAX -- 5 bytes (254 + 4 bytes) // size > UINT_MAX -- 9 bytes (255 + 8 bytes) // inline unsigned int GetSizeOfCompactSize(uint64_t nSize) { if (nSize < 253) return sizeof(unsigned char); else if (nSize <= std::numeric_limits::max()) return sizeof(unsigned char) + sizeof(unsigned short); else if (nSize <= std::numeric_limits::max()) return sizeof(unsigned char) + sizeof(unsigned int); else return sizeof(unsigned char) + sizeof(uint64_t); } template void WriteCompactSize(Stream& os, uint64_t nSize) { if (nSize < 253) { unsigned char chSize = nSize; WRITEDATA(os, chSize); } else if (nSize <= std::numeric_limits::max()) { unsigned char chSize = 253; unsigned short xSize = nSize; WRITEDATA(os, chSize); WRITEDATA(os, xSize); } else if (nSize <= std::numeric_limits::max()) { unsigned char chSize = 254; unsigned int xSize = nSize; WRITEDATA(os, chSize); WRITEDATA(os, xSize); } else { unsigned char chSize = 255; uint64_t xSize = nSize; WRITEDATA(os, chSize); WRITEDATA(os, xSize); } return; } template uint64_t ReadCompactSize(Stream& is) { unsigned char chSize; READDATA(is, chSize); uint64_t nSizeRet = 0; if (chSize < 253) { nSizeRet = chSize; } else if (chSize == 253) { unsigned short xSize; READDATA(is, xSize); nSizeRet = xSize; if (nSizeRet < 253) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } else if (chSize == 254) { unsigned int xSize; READDATA(is, xSize); nSizeRet = xSize; if (nSizeRet < 0x10000u) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } else { uint64_t xSize; READDATA(is, xSize); nSizeRet = xSize; if (nSizeRet < 0x100000000ULL) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } if (nSizeRet > (uint64_t)MAX_SIZE) throw std::ios_base::failure("ReadCompactSize() : size too large"); return nSizeRet; } // Variable-length integers: bytes are a MSB base-128 encoding of the number. // The high bit in each byte signifies whether another digit follows. To make // the encoding is one-to-one, one is subtracted from all but the last digit. // Thus, the byte sequence a[] with length len, where all but the last byte // has bit 128 set, encodes the number: // // (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1)) // // Properties: // * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes) // * Every integer has exactly one encoding // * Encoding does not depend on size of original integer type // * No redundancy: every (infinite) byte sequence corresponds to a list // of encoded integers. // // 0: [0x00] 256: [0x81 0x00] // 1: [0x01] 16383: [0xFE 0x7F] // 127: [0x7F] 16384: [0xFF 0x00] // 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F] // 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F] // 2^32: [0x8E 0xFE 0xFE 0xFF 0x00] template inline unsigned int GetSizeOfVarInt(I n) { int nRet = 0; while(true) { nRet++; if (n <= 0x7F) break; n = (n >> 7) - 1; } return nRet; } template void WriteVarInt(Stream& os, I n) { unsigned char tmp[(sizeof(n)*8+6)/7]; int len=0; while(true) { tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00); if (n <= 0x7F) break; n = (n >> 7) - 1; len++; } do { WRITEDATA(os, tmp[len]); } while(len--); } template I ReadVarInt(Stream& is) { I n = 0; while(true) { unsigned char chData; READDATA(is, chData); n = (n << 7) | (chData & 0x7F); if (chData & 0x80) n++; else return n; } } #define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj))) #define VARINT(obj) REF(WrapVarInt(REF(obj))) #define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj))) /** Wrapper for serializing arrays and POD. */ class CFlatData { protected: char* pbegin; char* pend; public: CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { } template explicit CFlatData(std::vector &v) { pbegin = (char*)begin_ptr(v); pend = (char*)end_ptr(v); } char* begin() { return pbegin; } const char* begin() const { return pbegin; } char* end() { return pend; } const char* end() const { return pend; } unsigned int GetSerializeSize(int, int=0) const { return pend - pbegin; } template void Serialize(Stream& s, int, int=0) const { s.write(pbegin, pend - pbegin); } template void Unserialize(Stream& s, int, int=0) { s.read(pbegin, pend - pbegin); } }; template class CVarInt { protected: I &n; public: CVarInt(I& nIn) : n(nIn) { } unsigned int GetSerializeSize(int, int) const { return GetSizeOfVarInt(n); } template void Serialize(Stream &s, int, int) const { WriteVarInt(s, n); } template void Unserialize(Stream& s, int, int) { n = ReadVarInt(s); } }; template class LimitedString { protected: std::string& string; public: LimitedString(std::string& string) : string(string) {} template void Unserialize(Stream& s, int, int=0) { size_t size = ReadCompactSize(s); if (size > Limit) { throw std::ios_base::failure("String length limit exceeded"); } string.resize(size); if (size != 0) s.read((char*)&string[0], size); } template void Serialize(Stream& s, int, int=0) const { WriteCompactSize(s, string.size()); if (!string.empty()) s.write((char*)&string[0], string.size()); } unsigned int GetSerializeSize(int, int=0) const { return GetSizeOfCompactSize(string.size()) + string.size(); } }; template CVarInt WrapVarInt(I& n) { return CVarInt(n); } // // Forward declarations // // string template unsigned int GetSerializeSize(const std::basic_string& str, int, int=0); template void Serialize(Stream& os, const std::basic_string& str, int, int=0); template void Unserialize(Stream& is, std::basic_string& str, int, int=0); // vector // vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob. template unsigned int GetSerializeSize_impl(const std::vector& v, int nType, int nVersion, const unsigned char&); template unsigned int GetSerializeSize_impl(const std::vector& v, int nType, int nVersion, const V&); template inline unsigned int GetSerializeSize(const std::vector& v, int nType, int nVersion); template void Serialize_impl(Stream& os, const std::vector& v, int nType, int nVersion, const unsigned char&); template void Serialize_impl(Stream& os, const std::vector& v, int nType, int nVersion, const V&); template inline void Serialize(Stream& os, const std::vector& v, int nType, int nVersion); template void Unserialize_impl(Stream& is, std::vector& v, int nType, int nVersion, const unsigned char&); template void Unserialize_impl(Stream& is, std::vector& v, int nType, int nVersion, const V&); template inline void Unserialize(Stream& is, std::vector& v, int nType, int nVersion); // others derived from vector extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion); template void Serialize(Stream& os, const CScript& v, int nType, int nVersion); template void Unserialize(Stream& is, CScript& v, int nType, int nVersion); // pair template unsigned int GetSerializeSize(const std::pair& item, int nType, int nVersion); template void Serialize(Stream& os, const std::pair& item, int nType, int nVersion); template void Unserialize(Stream& is, std::pair& item, int nType, int nVersion); // 3 tuple template unsigned int GetSerializeSize(const boost::tuple& item, int nType, int nVersion); template void Serialize(Stream& os, const boost::tuple& item, int nType, int nVersion); template void Unserialize(Stream& is, boost::tuple& item, int nType, int nVersion); // 4 tuple template unsigned int GetSerializeSize(const boost::tuple& item, int nType, int nVersion); template void Serialize(Stream& os, const boost::tuple& item, int nType, int nVersion); template void Unserialize(Stream& is, boost::tuple& item, int nType, int nVersion); // map template unsigned int GetSerializeSize(const std::map& m, int nType, int nVersion); template void Serialize(Stream& os, const std::map& m, int nType, int nVersion); template void Unserialize(Stream& is, std::map& m, int nType, int nVersion); // set template unsigned int GetSerializeSize(const std::set& m, int nType, int nVersion); template void Serialize(Stream& os, const std::set& m, int nType, int nVersion); template void Unserialize(Stream& is, std::set& m, int nType, int nVersion); // // If none of the specialized versions above matched, default to calling member function. // "int nType" is changed to "long nType" to keep from getting an ambiguous overload error. // The compiler will only cast int to long if none of the other templates matched. // Thanks to Boost serialization for this idea. // template inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion) { return a.GetSerializeSize((int)nType, nVersion); } template inline void Serialize(Stream& os, const T& a, long nType, int nVersion) { a.Serialize(os, (int)nType, nVersion); } template inline void Unserialize(Stream& is, T& a, long nType, int nVersion) { a.Unserialize(is, (int)nType, nVersion); } // // string // template unsigned int GetSerializeSize(const std::basic_string& str, int, int) { return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]); } template void Serialize(Stream& os, const std::basic_string& str, int, int) { WriteCompactSize(os, str.size()); if (!str.empty()) os.write((char*)&str[0], str.size() * sizeof(str[0])); } template void Unserialize(Stream& is, std::basic_string& str, int, int) { unsigned int nSize = ReadCompactSize(is); str.resize(nSize); if (nSize != 0) is.read((char*)&str[0], nSize * sizeof(str[0])); } // // vector // template unsigned int GetSerializeSize_impl(const std::vector& v, int nType, int nVersion, const unsigned char&) { return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T)); } template unsigned int GetSerializeSize_impl(const std::vector& v, int nType, int nVersion, const V&) { unsigned int nSize = GetSizeOfCompactSize(v.size()); for (typename std::vector::const_iterator vi = v.begin(); vi != v.end(); ++vi) nSize += GetSerializeSize((*vi), nType, nVersion); return nSize; } template inline unsigned int GetSerializeSize(const std::vector& v, int nType, int nVersion) { return GetSerializeSize_impl(v, nType, nVersion, T()); } template void Serialize_impl(Stream& os, const std::vector& v, int nType, int nVersion, const unsigned char&) { WriteCompactSize(os, v.size()); if (!v.empty()) os.write((char*)&v[0], v.size() * sizeof(T)); } template void Serialize_impl(Stream& os, const std::vector& v, int nType, int nVersion, const V&) { WriteCompactSize(os, v.size()); for (typename std::vector::const_iterator vi = v.begin(); vi != v.end(); ++vi) ::Serialize(os, (*vi), nType, nVersion); } template inline void Serialize(Stream& os, const std::vector& v, int nType, int nVersion) { Serialize_impl(os, v, nType, nVersion, T()); } template void Unserialize_impl(Stream& is, std::vector& v, int nType, int nVersion, const unsigned char&) { // Limit size per read so bogus size value won't cause out of memory v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; while (i < nSize) { unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char*)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream& is, std::vector& v, int nType, int nVersion, const V&) { v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; unsigned int nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) nMid = nSize; v.resize(nMid); for (; i < nMid; i++) Unserialize(is, v[i], nType, nVersion); } } template inline void Unserialize(Stream& is, std::vector& v, int nType, int nVersion) { Unserialize_impl(is, v, nType, nVersion, T()); } // // others derived from vector // inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion) { return GetSerializeSize((const std::vector&)v, nType, nVersion); } template void Serialize(Stream& os, const CScript& v, int nType, int nVersion) { Serialize(os, (const std::vector&)v, nType, nVersion); } template void Unserialize(Stream& is, CScript& v, int nType, int nVersion) { Unserialize(is, (std::vector&)v, nType, nVersion); } // // pair // template unsigned int GetSerializeSize(const std::pair& item, int nType, int nVersion) { return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion); } template void Serialize(Stream& os, const std::pair& item, int nType, int nVersion) { Serialize(os, item.first, nType, nVersion); Serialize(os, item.second, nType, nVersion); } template void Unserialize(Stream& is, std::pair& item, int nType, int nVersion) { Unserialize(is, item.first, nType, nVersion); Unserialize(is, item.second, nType, nVersion); } // // 3 tuple // template unsigned int GetSerializeSize(const boost::tuple& item, int nType, int nVersion) { unsigned int nSize = 0; nSize += GetSerializeSize(boost::get<0>(item), nType, nVersion); nSize += GetSerializeSize(boost::get<1>(item), nType, nVersion); nSize += GetSerializeSize(boost::get<2>(item), nType, nVersion); return nSize; } template void Serialize(Stream& os, const boost::tuple& item, int nType, int nVersion) { Serialize(os, boost::get<0>(item), nType, nVersion); Serialize(os, boost::get<1>(item), nType, nVersion); Serialize(os, boost::get<2>(item), nType, nVersion); } template void Unserialize(Stream& is, boost::tuple& item, int nType, int nVersion) { Unserialize(is, boost::get<0>(item), nType, nVersion); Unserialize(is, boost::get<1>(item), nType, nVersion); Unserialize(is, boost::get<2>(item), nType, nVersion); } // // 4 tuple // template unsigned int GetSerializeSize(const boost::tuple& item, int nType, int nVersion) { unsigned int nSize = 0; nSize += GetSerializeSize(boost::get<0>(item), nType, nVersion); nSize += GetSerializeSize(boost::get<1>(item), nType, nVersion); nSize += GetSerializeSize(boost::get<2>(item), nType, nVersion); nSize += GetSerializeSize(boost::get<3>(item), nType, nVersion); return nSize; } template void Serialize(Stream& os, const boost::tuple& item, int nType, int nVersion) { Serialize(os, boost::get<0>(item), nType, nVersion); Serialize(os, boost::get<1>(item), nType, nVersion); Serialize(os, boost::get<2>(item), nType, nVersion); Serialize(os, boost::get<3>(item), nType, nVersion); } template void Unserialize(Stream& is, boost::tuple& item, int nType, int nVersion) { Unserialize(is, boost::get<0>(item), nType, nVersion); Unserialize(is, boost::get<1>(item), nType, nVersion); Unserialize(is, boost::get<2>(item), nType, nVersion); Unserialize(is, boost::get<3>(item), nType, nVersion); } // // map // template unsigned int GetSerializeSize(const std::map& m, int nType, int nVersion) { unsigned int nSize = GetSizeOfCompactSize(m.size()); for (typename std::map::const_iterator mi = m.begin(); mi != m.end(); ++mi) nSize += GetSerializeSize((*mi), nType, nVersion); return nSize; } template void Serialize(Stream& os, const std::map& m, int nType, int nVersion) { WriteCompactSize(os, m.size()); for (typename std::map::const_iterator mi = m.begin(); mi != m.end(); ++mi) Serialize(os, (*mi), nType, nVersion); } template void Unserialize(Stream& is, std::map& m, int nType, int nVersion) { m.clear(); unsigned int nSize = ReadCompactSize(is); typename std::map::iterator mi = m.begin(); for (unsigned int i = 0; i < nSize; i++) { std::pair item; Unserialize(is, item, nType, nVersion); mi = m.insert(mi, item); } } // // set // template unsigned int GetSerializeSize(const std::set& m, int nType, int nVersion) { unsigned int nSize = GetSizeOfCompactSize(m.size()); for (typename std::set::const_iterator it = m.begin(); it != m.end(); ++it) nSize += GetSerializeSize((*it), nType, nVersion); return nSize; } template void Serialize(Stream& os, const std::set& m, int nType, int nVersion) { WriteCompactSize(os, m.size()); for (typename std::set::const_iterator it = m.begin(); it != m.end(); ++it) Serialize(os, (*it), nType, nVersion); } template void Unserialize(Stream& is, std::set& m, int nType, int nVersion) { m.clear(); unsigned int nSize = ReadCompactSize(is); typename std::set::iterator it = m.begin(); for (unsigned int i = 0; i < nSize; i++) { K key; Unserialize(is, key, nType, nVersion); it = m.insert(it, key); } } // // Support for ADD_SERIALIZE_METHODS and READWRITE macro // struct CSerActionSerialize { bool ForRead() const { return false; } }; struct CSerActionUnserialize { bool ForRead() const { return true; } }; template inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action) { ::Serialize(s, obj, nType, nVersion); } template inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action) { ::Unserialize(s, obj, nType, nVersion); } typedef std::vector > CSerializeData; class CSizeComputer { protected: size_t nSize; public: int nType; int nVersion; CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {} CSizeComputer& write(const char *psz, size_t nSize) { this->nSize += nSize; return *this; } template CSizeComputer& operator<<(const T& obj) { ::Serialize(*this, obj, nType, nVersion); return (*this); } size_t size() const { return nSize; } }; /** Double ended buffer combining vector and stream-like interfaces. * * >> and << read and write unformatted data using the above serialization templates. * Fills with data in linear time; some stringstream implementations take N^2 time. */ class CDataStream { protected: typedef CSerializeData vector_type; vector_type vch; unsigned int nReadPos; public: int nType; int nVersion; typedef vector_type::allocator_type allocator_type; typedef vector_type::size_type size_type; typedef vector_type::difference_type difference_type; typedef vector_type::reference reference; typedef vector_type::const_reference const_reference; typedef vector_type::value_type value_type; typedef vector_type::iterator iterator; typedef vector_type::const_iterator const_iterator; typedef vector_type::reverse_iterator reverse_iterator; explicit CDataStream(int nTypeIn, int nVersionIn) { Init(nTypeIn, nVersionIn); } CDataStream(const_iterator pbegin, const_iterator pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend) { Init(nTypeIn, nVersionIn); } #if !defined(_MSC_VER) || _MSC_VER >= 1300 CDataStream(const char* pbegin, const char* pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend) { Init(nTypeIn, nVersionIn); } #endif CDataStream(const vector_type& vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } CDataStream(const std::vector& vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } CDataStream(const std::vector& vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } void Init(int nTypeIn, int nVersionIn) { nReadPos = 0; nType = nTypeIn; nVersion = nVersionIn; } CDataStream& operator+=(const CDataStream& b) { vch.insert(vch.end(), b.begin(), b.end()); return *this; } friend CDataStream operator+(const CDataStream& a, const CDataStream& b) { CDataStream ret = a; ret += b; return (ret); } std::string str() const { return (std::string(begin(), end())); } // // Vector subset // const_iterator begin() const { return vch.begin() + nReadPos; } iterator begin() { return vch.begin() + nReadPos; } const_iterator end() const { return vch.end(); } iterator end() { return vch.end(); } size_type size() const { return vch.size() - nReadPos; } bool empty() const { return vch.size() == nReadPos; } void resize(size_type n, value_type c=0) { vch.resize(n + nReadPos, c); } void reserve(size_type n) { vch.reserve(n + nReadPos); } const_reference operator[](size_type pos) const { return vch[pos + nReadPos]; } reference operator[](size_type pos) { return vch[pos + nReadPos]; } void clear() { vch.clear(); nReadPos = 0; } iterator insert(iterator it, const char& x=char()) { return vch.insert(it, x); } void insert(iterator it, size_type n, const char& x) { vch.insert(it, n, x); } void insert(iterator it, std::vector::const_iterator first, std::vector::const_iterator last) { assert(last - first >= 0); if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos) { // special case for inserting at the front when there's room nReadPos -= (last - first); memcpy(&vch[nReadPos], &first[0], last - first); } else vch.insert(it, first, last); } #if !defined(_MSC_VER) || _MSC_VER >= 1300 void insert(iterator it, const char* first, const char* last) { assert(last - first >= 0); if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos) { // special case for inserting at the front when there's room nReadPos -= (last - first); memcpy(&vch[nReadPos], &first[0], last - first); } else vch.insert(it, first, last); } #endif iterator erase(iterator it) { if (it == vch.begin() + nReadPos) { // special case for erasing from the front if (++nReadPos >= vch.size()) { // whenever we reach the end, we take the opportunity to clear the buffer nReadPos = 0; return vch.erase(vch.begin(), vch.end()); } return vch.begin() + nReadPos; } else return vch.erase(it); } iterator erase(iterator first, iterator last) { if (first == vch.begin() + nReadPos) { // special case for erasing from the front if (last == vch.end()) { nReadPos = 0; return vch.erase(vch.begin(), vch.end()); } else { nReadPos = (last - vch.begin()); return last; } } else return vch.erase(first, last); } inline void Compact() { vch.erase(vch.begin(), vch.begin() + nReadPos); nReadPos = 0; } bool Rewind(size_type n) { // Rewind by n characters if the buffer hasn't been compacted yet if (n > nReadPos) return false; nReadPos -= n; return true; } // // Stream subset // bool eof() const { return size() == 0; } CDataStream* rdbuf() { return this; } int in_avail() { return size(); } void SetType(int n) { nType = n; } int GetType() { return nType; } void SetVersion(int n) { nVersion = n; } int GetVersion() { return nVersion; } void ReadVersion() { *this >> nVersion; } void WriteVersion() { *this << nVersion; } CDataStream& read(char* pch, size_t nSize) { // Read from the beginning of the buffer unsigned int nReadPosNext = nReadPos + nSize; if (nReadPosNext >= vch.size()) { if (nReadPosNext > vch.size()) { throw std::ios_base::failure("CDataStream::read() : end of data"); } memcpy(pch, &vch[nReadPos], nSize); nReadPos = 0; vch.clear(); return (*this); } memcpy(pch, &vch[nReadPos], nSize); nReadPos = nReadPosNext; return (*this); } CDataStream& ignore(int nSize) { // Ignore from the beginning of the buffer assert(nSize >= 0); unsigned int nReadPosNext = nReadPos + nSize; if (nReadPosNext >= vch.size()) { if (nReadPosNext > vch.size()) throw std::ios_base::failure("CDataStream::ignore() : end of data"); nReadPos = 0; vch.clear(); return (*this); } nReadPos = nReadPosNext; return (*this); } CDataStream& write(const char* pch, size_t nSize) { // Write to the end of the buffer vch.insert(vch.end(), pch, pch + nSize); return (*this); } template void Serialize(Stream& s, int nType, int nVersion) const { // Special case: stream << stream concatenates like stream += stream if (!vch.empty()) s.write((char*)&vch[0], vch.size() * sizeof(vch[0])); } template unsigned int GetSerializeSize(const T& obj) { // Tells the size of the object if serialized to this stream return ::GetSerializeSize(obj, nType, nVersion); } template CDataStream& operator<<(const T& obj) { // Serialize to this stream ::Serialize(*this, obj, nType, nVersion); return (*this); } template CDataStream& operator>>(T& obj) { // Unserialize from this stream ::Unserialize(*this, obj, nType, nVersion); return (*this); } void GetAndClear(CSerializeData &data) { data.insert(data.end(), begin(), end()); clear(); } }; /** Non-refcounted RAII wrapper for FILE* * * Will automatically close the file when it goes out of scope if not null. * If you're returning the file pointer, return file.release(). * If you need to close the file early, use file.fclose() instead of fclose(file). */ class CAutoFile { private: // Disallow copies CAutoFile(const CAutoFile&); CAutoFile& operator=(const CAutoFile&); int nType; int nVersion; FILE* file; public: CAutoFile(FILE* filenew, int nTypeIn, int nVersionIn) { file = filenew; nType = nTypeIn; nVersion = nVersionIn; } ~CAutoFile() { fclose(); } void fclose() { if (file) { ::fclose(file); file = NULL; } } FILE* release() { FILE* ret = file; file = NULL; return ret; } operator FILE*() { return file; } FILE* operator->() { return file; } FILE& operator*() { return *file; } FILE** operator&() { return &file; } FILE* operator=(FILE* pnew) { return file = pnew; } bool operator!() { return (file == NULL); } // // Stream subset // void SetType(int n) { nType = n; } int GetType() { return nType; } void SetVersion(int n) { nVersion = n; } int GetVersion() { return nVersion; } void ReadVersion() { *this >> nVersion; } void WriteVersion() { *this << nVersion; } CAutoFile& read(char* pch, size_t nSize) { if (!file) throw std::ios_base::failure("CAutoFile::read : file handle is NULL"); if (fread(pch, 1, nSize, file) != nSize) throw std::ios_base::failure(feof(file) ? "CAutoFile::read : end of file" : "CAutoFile::read : fread failed"); return (*this); } CAutoFile& write(const char* pch, size_t nSize) { if (!file) throw std::ios_base::failure("CAutoFile::write : file handle is NULL"); if (fwrite(pch, 1, nSize, file) != nSize) throw std::ios_base::failure("CAutoFile::write : write failed"); return (*this); } template unsigned int GetSerializeSize(const T& obj) { // Tells the size of the object if serialized to this stream return ::GetSerializeSize(obj, nType, nVersion); } template CAutoFile& operator<<(const T& obj) { // Serialize to this stream if (!file) throw std::ios_base::failure("CAutoFile::operator<< : file handle is NULL"); ::Serialize(*this, obj, nType, nVersion); return (*this); } template CAutoFile& operator>>(T& obj) { // Unserialize from this stream if (!file) throw std::ios_base::failure("CAutoFile::operator>> : file handle is NULL"); ::Unserialize(*this, obj, nType, nVersion); return (*this); } }; /** Non-refcounted RAII wrapper around a FILE* that implements a ring buffer to * deserialize from. It guarantees the ability to rewind a given number of bytes. * * Will automatically close the file when it goes out of scope if not null. * If you need to close the file early, use file.fclose() instead of fclose(file). */ class CBufferedFile { private: // Disallow copies CBufferedFile(const CBufferedFile&); CBufferedFile& operator=(const CBufferedFile&); int nType; int nVersion; FILE *src; // source file uint64_t nSrcPos; // how many bytes have been read from source uint64_t nReadPos; // how many bytes have been read from this uint64_t nReadLimit; // up to which position we're allowed to read uint64_t nRewind; // how many bytes we guarantee to rewind std::vector vchBuf; // the buffer protected: // read data from the source to fill the buffer bool Fill() { unsigned int pos = nSrcPos % vchBuf.size(); unsigned int readNow = vchBuf.size() - pos; unsigned int nAvail = vchBuf.size() - (nSrcPos - nReadPos) - nRewind; if (nAvail < readNow) readNow = nAvail; if (readNow == 0) return false; size_t read = fread((void*)&vchBuf[pos], 1, readNow, src); if (read == 0) { throw std::ios_base::failure(feof(src) ? "CBufferedFile::Fill : end of file" : "CBufferedFile::Fill : fread failed"); } else { nSrcPos += read; return true; } } public: CBufferedFile(FILE *fileIn, uint64_t nBufSize, uint64_t nRewindIn, int nTypeIn, int nVersionIn) : nSrcPos(0), nReadPos(0), nReadLimit((uint64_t)(-1)), nRewind(nRewindIn), vchBuf(nBufSize, 0) { src = fileIn; nType = nTypeIn; nVersion = nVersionIn; } ~CBufferedFile() { fclose(); } void fclose() { if (src) { ::fclose(src); src = NULL; } } // check whether we're at the end of the source file bool eof() const { return nReadPos == nSrcPos && feof(src); } // read a number of bytes CBufferedFile& read(char *pch, size_t nSize) { if (nSize + nReadPos > nReadLimit) throw std::ios_base::failure("Read attempted past buffer limit"); if (nSize + nRewind > vchBuf.size()) throw std::ios_base::failure("Read larger than buffer size"); while (nSize > 0) { if (nReadPos == nSrcPos) Fill(); unsigned int pos = nReadPos % vchBuf.size(); size_t nNow = nSize; if (nNow + pos > vchBuf.size()) nNow = vchBuf.size() - pos; if (nNow + nReadPos > nSrcPos) nNow = nSrcPos - nReadPos; memcpy(pch, &vchBuf[pos], nNow); nReadPos += nNow; pch += nNow; nSize -= nNow; } return (*this); } // return the current reading position uint64_t GetPos() { return nReadPos; } // rewind to a given reading position bool SetPos(uint64_t nPos) { nReadPos = nPos; if (nReadPos + nRewind < nSrcPos) { nReadPos = nSrcPos - nRewind; return false; } else if (nReadPos > nSrcPos) { nReadPos = nSrcPos; return false; } else { return true; } } bool Seek(uint64_t nPos) { long nLongPos = nPos; if (nPos != (uint64_t)nLongPos) return false; if (fseek(src, nLongPos, SEEK_SET)) return false; nLongPos = ftell(src); nSrcPos = nLongPos; nReadPos = nLongPos; return true; } // prevent reading beyond a certain position // no argument removes the limit bool SetLimit(uint64_t nPos = (uint64_t)(-1)) { if (nPos < nReadPos) return false; nReadLimit = nPos; return true; } template CBufferedFile& operator>>(T& obj) { // Unserialize from this stream ::Unserialize(*this, obj, nType, nVersion); return (*this); } // search for a given byte in the stream, and remain positioned on it void FindByte(char ch) { while (true) { if (nReadPos == nSrcPos) Fill(); if (vchBuf[nReadPos % vchBuf.size()] == ch) break; nReadPos++; } } }; #endif // BITCOIN_SERIALIZE_H