# Test libsecp256k1' group operation implementations using prover.sage import sys load("group_prover.sage") load("weierstrass_prover.sage") def formula_secp256k1_gej_double_var(a): """libsecp256k1's secp256k1_gej_double_var, used by various addition functions""" rz = a.Z * a.Y s = a.Y^2 l = a.X^2 l = l * 3 l = l / 2 t = -s t = t * a.X rx = l^2 rx = rx + t rx = rx + t s = s^2 t = t + rx ry = t * l ry = ry + s ry = -ry return jacobianpoint(rx, ry, rz) def formula_secp256k1_gej_add_var(branch, a, b): """libsecp256k1's secp256k1_gej_add_var""" if branch == 0: return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b) if branch == 1: return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a) z22 = b.Z^2 z12 = a.Z^2 u1 = a.X * z22 u2 = b.X * z12 s1 = a.Y * z22 s1 = s1 * b.Z s2 = b.Y * z12 s2 = s2 * a.Z h = -u1 h = h + u2 i = -s2 i = i + s1 if branch == 2: r = formula_secp256k1_gej_double_var(a) return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r) if branch == 3: return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity()) t = h * b.Z rz = a.Z * t h2 = h^2 h2 = -h2 h3 = h2 * h t = u1 * h2 rx = i^2 rx = rx + h3 rx = rx + t rx = rx + t t = t + rx ry = t * i h3 = h3 * s1 ry = ry + h3 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) def formula_secp256k1_gej_add_ge_var(branch, a, b): """libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1""" if branch == 0: return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b) if branch == 1: return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a) z12 = a.Z^2 u1 = a.X u2 = b.X * z12 s1 = a.Y s2 = b.Y * z12 s2 = s2 * a.Z h = -u1 h = h + u2 i = -s2 i = i + s1 if (branch == 2): r = formula_secp256k1_gej_double_var(a) return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r) if (branch == 3): return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity()) rz = a.Z * h h2 = h^2 h2 = -h2 h3 = h2 * h t = u1 * h2 rx = i^2 rx = rx + h3 rx = rx + t rx = rx + t t = t + rx ry = t * i h3 = h3 * s1 ry = ry + h3 return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) def formula_secp256k1_gej_add_zinv_var(branch, a, b): """libsecp256k1's secp256k1_gej_add_zinv_var""" bzinv = b.Z^(-1) if branch == 0: rinf = b.Infinity bzinv2 = bzinv^2 bzinv3 = bzinv2 * bzinv rx = b.X * bzinv2 ry = b.Y * bzinv3 rz = 1 return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz, rinf)) if branch == 1: return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a) azz = a.Z * bzinv z12 = azz^2 u1 = a.X u2 = b.X * z12 s1 = a.Y s2 = b.Y * z12 s2 = s2 * azz h = -u1 h = h + u2 i = -s2 i = i + s1 if branch == 2: r = formula_secp256k1_gej_double_var(a) return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r) if branch == 3: return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity()) rz = a.Z * h h2 = h^2 h2 = -h2 h3 = h2 * h t = u1 * h2 rx = i^2 rx = rx + h3 rx = rx + t rx = rx + t t = t + rx ry = t * i h3 = h3 * s1 ry = ry + h3 return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz)) def formula_secp256k1_gej_add_ge(branch, a, b): """libsecp256k1's secp256k1_gej_add_ge""" zeroes = {} nonzeroes = {} a_infinity = False if (branch & 2) != 0: nonzeroes.update({a.Infinity : 'a_infinite'}) a_infinity = True else: zeroes.update({a.Infinity : 'a_finite'}) zz = a.Z^2 u1 = a.X u2 = b.X * zz s1 = a.Y s2 = b.Y * zz s2 = s2 * a.Z t = u1 t = t + u2 m = s1 m = m + s2 rr = t^2 m_alt = -u2 tt = u1 * m_alt rr = rr + tt degenerate = (branch & 1) != 0 if degenerate: zeroes.update({m : 'm_zero'}) else: nonzeroes.update({m : 'm_nonzero'}) rr_alt = s1 rr_alt = rr_alt * 2 m_alt = m_alt + u1 if not degenerate: rr_alt = rr m_alt = m n = m_alt^2 q = -t q = q * n n = n^2 if degenerate: n = m t = rr_alt^2 rz = a.Z * m_alt t = t + q rx = t t = t * 2 t = t + q t = t * rr_alt t = t + n ry = -t ry = ry / 2 if a_infinity: rx = b.X ry = b.Y rz = 1 if (branch & 4) != 0: zeroes.update({rz : 'r.z = 0'}) return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity()) else: nonzeroes.update({rz : 'r.z != 0'}) return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz)) def formula_secp256k1_gej_add_ge_old(branch, a, b): """libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx""" a_infinity = (branch & 1) != 0 zero = {} nonzero = {} if a_infinity: nonzero.update({a.Infinity : 'a_infinite'}) else: zero.update({a.Infinity : 'a_finite'}) zz = a.Z^2 u1 = a.X u2 = b.X * zz s1 = a.Y s2 = b.Y * zz s2 = s2 * a.Z z = a.Z t = u1 t = t + u2 m = s1 m = m + s2 n = m^2 q = n * t n = n^2 rr = t^2 t = u1 * u2 t = -t rr = rr + t t = rr^2 rz = m * z infinity = False if (branch & 2) != 0: if not a_infinity: infinity = True else: return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity()) zero.update({rz : 'r.z=0'}) else: nonzero.update({rz : 'r.z!=0'}) rz = rz * (0 if a_infinity else 2) rx = t q = -q rx = rx + q q = q * 3 t = t * 2 t = t + q t = t * rr t = t + n ry = -t rx = rx * (0 if a_infinity else 4) ry = ry * (0 if a_infinity else 4) t = b.X t = t * (1 if a_infinity else 0) rx = rx + t t = b.Y t = t * (1 if a_infinity else 0) ry = ry + t t = (1 if a_infinity else 0) rz = rz + t if infinity: return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity()) return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz)) if __name__ == "__main__": success = True success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var) success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var) success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var) success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge) success = success & (not check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)) if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive": success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43) success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43) success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43) success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge, 43) success = success & (not check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)) sys.exit(int(not success))