load("secp256k1_params.sage") orders_done = set() results = {} first = True for b in range(1, P): # There are only 6 curves (up to isomorphism) of the form y^2=x^3+B. Stop once we have tried all. if len(orders_done) == 6: break E = EllipticCurve(F, [0, b]) print("Analyzing curve y^2 = x^3 + %i" % b) n = E.order() # Skip curves with an order we've already tried if n in orders_done: print("- Isomorphic to earlier curve") continue orders_done.add(n) # Skip curves isomorphic to the real secp256k1 if n.is_pseudoprime(): print(" - Isomorphic to secp256k1") continue print("- Finding subgroups") # Find what prime subgroups exist for f, _ in n.factor(): print("- Analyzing subgroup of order %i" % f) # Skip subgroups of order >1000 if f < 4 or f > 1000: print(" - Bad size") continue # Iterate over X coordinates until we find one that is on the curve, has order f, # and for which curve isomorphism exists that maps it to X coordinate 1. for x in range(1, P): # Skip X coordinates not on the curve, and construct the full point otherwise. if not E.is_x_coord(x): continue G = E.lift_x(F(x)) print(" - Analyzing (multiples of) point with X=%i" % x) # Skip points whose order is not a multiple of f. Project the point to have # order f otherwise. if (G.order() % f): print(" - Bad order") continue G = G * (G.order() // f) # Find lambda for endomorphism. Skip if none can be found. lam = None for l in Integers(f)(1).nth_root(3, all=True): if int(l)*G == E(BETA*G[0], G[1]): lam = int(l) break if lam is None: print(" - No endomorphism for this subgroup") break # Now look for an isomorphism of the curve that gives this point an X # coordinate equal to 1. # If (x,y) is on y^2 = x^3 + b, then (a^2*x, a^3*y) is on y^2 = x^3 + a^6*b. # So look for m=a^2=1/x. m = F(1)/G[0] if not m.is_square(): print(" - No curve isomorphism maps it to a point with X=1") continue a = m.sqrt() rb = a^6*b RE = EllipticCurve(F, [0, rb]) # Use as generator twice the image of G under the above isormorphism. # This means that generator*(1/2 mod f) will have X coordinate 1. RG = RE(1, a^3*G[1]) * 2 # And even Y coordinate. if int(RG[1]) % 2: RG = -RG assert(RG.order() == f) assert(lam*RG == RE(BETA*RG[0], RG[1])) # We have found curve RE:y^2=x^3+rb with generator RG of order f. Remember it results[f] = {"b": rb, "G": RG, "lambda": lam} print(" - Found solution") break print("") print("") print("") print("/* To be put in src/group_impl.h: */") first = True for f in sorted(results.keys()): b = results[f]["b"] G = results[f]["G"] print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f)) first = False print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(") print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) print(");") print("static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(") print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) print(");") print("# else") print("# error No known generator for the specified exhaustive test group order.") print("# endif") print("") print("") print("/* To be put in src/scalar_impl.h: */") first = True for f in sorted(results.keys()): lam = results[f]["lambda"] print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f)) first = False print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam) print("# else") print("# error No known lambda for the specified exhaustive test group order.") print("# endif") print("")