#ifndef _SECP256K1_ # define _SECP256K1_ # ifdef __cplusplus extern "C" { # endif # if !defined(SECP256K1_GNUC_PREREQ) # if defined(__GNUC__)&&defined(__GNUC_MINOR__) # define SECP256K1_GNUC_PREREQ(_maj,_min) \ ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min)) # else # define SECP256K1_GNUC_PREREQ(_maj,_min) 0 # endif # endif # if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) # if SECP256K1_GNUC_PREREQ(2,7) # define SECP256K1_INLINE __inline__ # elif (defined(_MSC_VER)) # define SECP256K1_INLINE __inline # else # define SECP256K1_INLINE # endif # else # define SECP256K1_INLINE inline # endif /**Warning attributes * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out * some paranoid null checks. */ # if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) # define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__)) # else # define SECP256K1_WARN_UNUSED_RESULT # endif # if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) # define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x))) # else # define SECP256K1_ARG_NONNULL(_x) # endif /** Opaque data structure that holds context information (precomputed tables etc.). * Only functions that take a pointer to a non-const context require exclusive * access to it. Multiple functions that take a pointer to a const context may * run simultaneously. */ typedef struct secp256k1_context_struct secp256k1_context_t; /** Flags to pass to secp256k1_context_create. */ # define SECP256K1_CONTEXT_VERIFY (1 << 0) # define SECP256K1_CONTEXT_SIGN (1 << 1) /** Create a secp256k1 context object. * Returns: a newly created context object. * In: flags: which parts of the context to initialize. */ secp256k1_context_t* secp256k1_context_create( int flags ) SECP256K1_WARN_UNUSED_RESULT; /** Copies a secp256k1 context object. * Returns: a newly created context object. * In: ctx: an existing context to copy */ secp256k1_context_t* secp256k1_context_clone( const secp256k1_context_t* ctx ) SECP256K1_WARN_UNUSED_RESULT; /** Destroy a secp256k1 context object. * The context pointer may not be used afterwards. */ void secp256k1_context_destroy( secp256k1_context_t* ctx ) SECP256K1_ARG_NONNULL(1); /** Verify an ECDSA signature. * Returns: 1: correct signature * 0: incorrect signature * -1: invalid public key * -2: invalid signature * In: ctx: a secp256k1 context object, initialized for verification. * msg32: the 32-byte message hash being verified (cannot be NULL) * sig: the signature being verified (cannot be NULL) * siglen: the length of the signature * pubkey: the public key to verify with (cannot be NULL) * pubkeylen: the length of pubkey */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( const secp256k1_context_t* ctx, const unsigned char *msg32, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5); /** A pointer to a function to deterministically generate a nonce. * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail. * In: msg32: the 32-byte message hash being verified (will not be NULL) * key32: pointer to a 32-byte secret key (will not be NULL) * attempt: how many iterations we have tried to find a nonce. * This will almost always be 0, but different attempt values * are required to result in a different nonce. * data: Arbitrary data pointer that is passed through. * Out: nonce32: pointer to a 32-byte array to be filled by the function. * Except for test cases, this function should compute some cryptographic hash of * the message, the key and the attempt. */ typedef int (*secp256k1_nonce_function_t)( unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int attempt, const void *data ); /** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function. * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of * extra entropy. */ extern const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979; /** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */ extern const secp256k1_nonce_function_t secp256k1_nonce_function_default; /** Create an ECDSA signature. * Returns: 1: signature created * 0: the nonce generation function failed, the private key was invalid, or there is not * enough space in the signature (as indicated by siglen). * In: ctx: pointer to a context object, initialized for signing (cannot be NULL) * msg32: the 32-byte message hash being signed (cannot be NULL) * seckey: pointer to a 32-byte secret key (cannot be NULL) * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) * In/Out: siglen: pointer to an int with the length of sig, which will be updated * to contain the actual signature length (<=72). * * The sig always has an s value in the lower half of the range (From 0x1 * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, * inclusive), unlike many other implementations. * With ECDSA a third-party can can forge a second distinct signature * of the same message given a single initial signature without knowing * the key by setting s to its additive inverse mod-order, 'flipping' the * sign of the random point R which is not included in the signature. * Since the forgery is of the same message this isn't universally * problematic, but in systems where message malleability or uniqueness * of signatures is important this can cause issues. This forgery can be * blocked by all verifiers forcing signers to use a canonical form. The * lower-S form reduces the size of signatures slightly on average when * variable length encodings (such as DER) are used and is cheap to * verify, making it a good choice. Security of always using lower-S is * assured because anyone can trivially modify a signature after the * fact to enforce this property. Adjusting it inside the signing * function avoids the need to re-serialize or have curve specific * constants outside of the library. By always using a canonical form * even in applications where it isn't needed it becomes possible to * impose a requirement later if a need is discovered. * No other forms of ECDSA malleability are known and none seem likely, * but there is no formal proof that ECDSA, even with this additional * restriction, is free of other malleability. Commonly used serialization * schemes will also accept various non-unique encodings, so care should * be taken when this property is required for an application. */ int secp256k1_ecdsa_sign( const secp256k1_context_t* ctx, const unsigned char *msg32, unsigned char *sig, int *siglen, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void *ndata ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); /** Create a compact ECDSA signature (64 byte + recovery id). * Returns: 1: signature created * 0: the nonce generation function failed, or the secret key was invalid. * In: ctx: pointer to a context object, initialized for signing (cannot be NULL) * msg32: the 32-byte message hash being signed (cannot be NULL) * seckey: pointer to a 32-byte secret key (cannot be NULL) * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) * Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL) * In case 0 is returned, the returned signature length will be zero. * recid: pointer to an int, which will be updated to contain the recovery id (can be NULL) */ int secp256k1_ecdsa_sign_compact( const secp256k1_context_t* ctx, const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void *ndata, int *recid ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Recover an ECDSA public key from a compact signature. * Returns: 1: public key successfully recovered (which guarantees a correct signature). * 0: otherwise. * In: ctx: pointer to a context object, initialized for verification (cannot be NULL) * msg32: the 32-byte message hash assumed to be signed (cannot be NULL) * sig64: signature as 64 byte array (cannot be NULL) * compressed: whether to recover a compressed or uncompressed pubkey * recid: the recovery id (0-3, as returned by ecdsa_sign_compact) * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey (cannot be NULL) * pubkeylen: pointer to an int that will contain the pubkey length (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact( const secp256k1_context_t* ctx, const unsigned char *msg32, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); /** Verify an ECDSA secret key. * Returns: 1: secret key is valid * 0: secret key is invalid * In: ctx: pointer to a context object (cannot be NULL) * seckey: pointer to a 32-byte secret key (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify( const secp256k1_context_t* ctx, const unsigned char *seckey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); /** Just validate a public key. * Returns: 1: public key is valid * 0: public key is invalid * In: ctx: pointer to a context object (cannot be NULL) * pubkey: pointer to a 33-byte or 65-byte public key (cannot be NULL). * pubkeylen: length of pubkey */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_verify( const secp256k1_context_t* ctx, const unsigned char *pubkey, int pubkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); /** Compute the public key for a secret key. * In: ctx: pointer to a context object, initialized for signing (cannot be NULL) * compressed: whether the computed public key should be compressed * seckey: pointer to a 32-byte private key (cannot be NULL) * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) * area to store the public key (cannot be NULL) * pubkeylen: pointer to int that will be updated to contains the pubkey's * length (cannot be NULL) * Returns: 1: secret was valid, public key stores * 0: secret was invalid, try again */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( const secp256k1_context_t* ctx, unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Decompress a public key. * In: ctx: pointer to a context object (cannot be NULL) * In/Out: pubkey: pointer to a 65-byte array to put the decompressed public key. * It must contain a 33-byte or 65-byte public key already (cannot be NULL) * pubkeylen: pointer to the size of the public key pointed to by pubkey (cannot be NULL) * It will be updated to reflect the new size. * Returns: 0: pubkey was invalid * 1: pubkey was valid, and was replaced with its decompressed version */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_decompress( const secp256k1_context_t* ctx, unsigned char *pubkey, int *pubkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Export a private key in DER format. * In: ctx: pointer to a context object, initialized for signing (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export( const secp256k1_context_t* ctx, const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Import a private key in DER format. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import( const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *privkey, int privkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a private key by adding tweak to it. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by adding tweak times the generator to it. * In: ctx: pointer to a context object, initialized for verification (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( const secp256k1_context_t* ctx, unsigned char *pubkey, int pubkeylen, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); /** Tweak a private key by multiplying it with tweak. */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by multiplying it with tweak. * In: ctx: pointer to a context object, initialized for verification (cannot be NULL) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( const secp256k1_context_t* ctx, unsigned char *pubkey, int pubkeylen, const unsigned char *tweak ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); /** Updates the context randomization. * Returns: 1: randomization successfully updated * 0: error * In: ctx: pointer to a context object (cannot be NULL) * seed32: pointer to a 32-byte random seed (NULL resets to initial state) */ SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( secp256k1_context_t* ctx, const unsigned char *seed32 ) SECP256K1_ARG_NONNULL(1); # ifdef __cplusplus } # endif #endif