/************************************************************************* * Written in 2020-2022 by Elichai Turkel * * To the extent possible under law, the author(s) have dedicated all * * copyright and related and neighboring rights to the software in this * * file to the public domain worldwide. This software is distributed * * without any warranty. For the CC0 Public Domain Dedication, see * * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * *************************************************************************/ #include #include #include #include #include #include #include "examples_util.h" int main(void) { unsigned char msg[12] = "Hello World!"; unsigned char msg_hash[32]; unsigned char tag[17] = "my_fancy_protocol"; unsigned char seckey[32]; unsigned char randomize[32]; unsigned char auxiliary_rand[32]; unsigned char serialized_pubkey[32]; unsigned char signature[64]; int is_signature_valid, is_signature_valid2; int return_val; secp256k1_xonly_pubkey pubkey; secp256k1_keypair keypair; /* Before we can call actual API functions, we need to create a "context". */ secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); if (!fill_random(randomize, sizeof(randomize))) { printf("Failed to generate randomness\n"); return 1; } /* Randomizing the context is recommended to protect against side-channel * leakage See `secp256k1_context_randomize` in secp256k1.h for more * information about it. This should never fail. */ return_val = secp256k1_context_randomize(ctx, randomize); assert(return_val); /*** Key Generation ***/ /* If the secret key is zero or out of range (bigger than secp256k1's * order), we try to sample a new key. Note that the probability of this * happening is negligible. */ while (1) { if (!fill_random(seckey, sizeof(seckey))) { printf("Failed to generate randomness\n"); return 1; } /* Try to create a keypair with a valid context, it should only fail if * the secret key is zero or out of range. */ if (secp256k1_keypair_create(ctx, &keypair, seckey)) { break; } } /* Extract the X-only public key from the keypair. We pass NULL for * `pk_parity` as the parity isn't needed for signing or verification. * `secp256k1_keypair_xonly_pub` supports returning the parity for * other use cases such as tests or verifying Taproot tweaks. * This should never fail with a valid context and public key. */ return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair); assert(return_val); /* Serialize the public key. Should always return 1 for a valid public key. */ return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey); assert(return_val); /*** Signing ***/ /* Instead of signing (possibly very long) messages directly, we sign a * 32-byte hash of the message in this example. * * We use secp256k1_tagged_sha256 to create this hash. This function expects * a context-specific "tag", which restricts the context in which the signed * messages should be considered valid. For example, if protocol A mandates * to use the tag "my_fancy_protocol" and protocol B mandates to use the tag * "my_boring_protocol", then signed messages from protocol A will never be * valid in protocol B (and vice versa), even if keys are reused across * protocols. This implements "domain separation", which is considered good * practice. It avoids attacks in which users are tricked into signing a * message that has intended consequences in the intended context (e.g., * protocol A) but would have unintended consequences if it were valid in * some other context (e.g., protocol B). */ return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); assert(return_val); /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */ if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) { printf("Failed to generate randomness\n"); return 1; } /* Generate a Schnorr signature. * * We use the secp256k1_schnorrsig_sign32 function that provides a simple * interface for signing 32-byte messages (which in our case is a hash of * the actual message). BIP-340 recommends passing 32 bytes of randomness * to the signing function to improve security against side-channel attacks. * Signing with a valid context, a 32-byte message, a verified keypair, and * any 32 bytes of auxiliary random data should never fail. */ return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand); assert(return_val); /*** Verification ***/ /* Deserialize the public key. This will return 0 if the public key can't * be parsed correctly */ if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) { printf("Failed parsing the public key\n"); return 1; } /* Compute the tagged hash on the received messages using the same tag as the signer. */ return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg)); assert(return_val); /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey); printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); printf("Secret Key: "); print_hex(seckey, sizeof(seckey)); printf("Public Key: "); print_hex(serialized_pubkey, sizeof(serialized_pubkey)); printf("Signature: "); print_hex(signature, sizeof(signature)); /* This will clear everything from the context and free the memory */ secp256k1_context_destroy(ctx); /* Bonus example: if all we need is signature verification (and no key generation or signing), we don't need to use a context created via secp256k1_context_create(). We can simply use the static (i.e., global) context secp256k1_context_static. See its description in include/secp256k1.h for details. */ is_signature_valid2 = secp256k1_schnorrsig_verify(secp256k1_context_static, signature, msg_hash, 32, &pubkey); assert(is_signature_valid2 == is_signature_valid); /* It's best practice to try to clear secrets from memory after using them. * This is done because some bugs can allow an attacker to leak memory, for * example through "out of bounds" array access (see Heartbleed), or the OS * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. * * Here we are preventing these writes from being optimized out, as any good compiler * will remove any writes that aren't used. */ secure_erase(seckey, sizeof(seckey)); return 0; }