/*********************************************************************** * Copyright (c) 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H #include "checkmem.h" #include "modinv32_impl.h" #include "util.h" /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint32_t)0xD0364141UL) #define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL) #define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL) #define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL) #define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL) #define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL) /* Limbs of 2^256 minus the secp256k1 order. */ #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) #define SECP256K1_N_C_1 (~SECP256K1_N_1) #define SECP256K1_N_C_2 (~SECP256K1_N_2) #define SECP256K1_N_C_3 (~SECP256K1_N_3) #define SECP256K1_N_C_4 (1) /* Limbs of half the secp256k1 order. */ #define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL) #define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL) #define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL) #define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL) #define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL) #define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL) SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { r->d[0] = 0; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; r->d[4] = 0; r->d[5] = 0; r->d[6] = 0; r->d[7] = 0; } SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { r->d[0] = v; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; r->d[4] = 0; r->d[5] = 0; r->d[6] = 0; r->d[7] = 0; SECP256K1_SCALAR_VERIFY(r); } SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { SECP256K1_SCALAR_VERIFY(a); VERIFY_CHECK(count > 0 && count <= 32); VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5); return (a->d[offset >> 5] >> (offset & 0x1F)) & (0xFFFFFFFF >> (32 - count)); } SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { SECP256K1_SCALAR_VERIFY(a); VERIFY_CHECK(count > 0 && count <= 32); VERIFY_CHECK(offset + count <= 256); if ((offset + count - 1) >> 5 == offset >> 5) { return secp256k1_scalar_get_bits_limb32(a, offset, count); } else { VERIFY_CHECK((offset >> 5) + 1 < 8); return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & (0xFFFFFFFF >> (32 - count)); } } SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { int yes = 0; int no = 0; no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */ no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */ no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */ no |= (a->d[4] < SECP256K1_N_4); yes |= (a->d[4] > SECP256K1_N_4) & ~no; no |= (a->d[3] < SECP256K1_N_3) & ~yes; yes |= (a->d[3] > SECP256K1_N_3) & ~no; no |= (a->d[2] < SECP256K1_N_2) & ~yes; yes |= (a->d[2] > SECP256K1_N_2) & ~no; no |= (a->d[1] < SECP256K1_N_1) & ~yes; yes |= (a->d[1] > SECP256K1_N_1) & ~no; yes |= (a->d[0] >= SECP256K1_N_0) & ~no; return yes; } SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) { uint64_t t; VERIFY_CHECK(overflow <= 1); t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0; r->d[0] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1; r->d[1] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2; r->d[2] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3; r->d[3] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4; r->d[4] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[5]; r->d[5] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[6]; r->d[6] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[7]; r->d[7] = t & 0xFFFFFFFFUL; SECP256K1_SCALAR_VERIFY(r); return overflow; } static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { int overflow; uint64_t t = (uint64_t)a->d[0] + b->d[0]; SECP256K1_SCALAR_VERIFY(a); SECP256K1_SCALAR_VERIFY(b); r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[1] + b->d[1]; r->d[1] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[2] + b->d[2]; r->d[2] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[3] + b->d[3]; r->d[3] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[4] + b->d[4]; r->d[4] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[5] + b->d[5]; r->d[5] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[6] + b->d[6]; r->d[6] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[7] + b->d[7]; r->d[7] = t & 0xFFFFFFFFULL; t >>= 32; overflow = t + secp256k1_scalar_check_overflow(r); VERIFY_CHECK(overflow == 0 || overflow == 1); secp256k1_scalar_reduce(r, overflow); SECP256K1_SCALAR_VERIFY(r); return overflow; } static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { uint64_t t; volatile int vflag = flag; SECP256K1_SCALAR_VERIFY(r); VERIFY_CHECK(bit < 256); bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */ t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F)); r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F)); r->d[1] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F)); r->d[2] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F)); r->d[3] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F)); r->d[4] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F)); r->d[5] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F)); r->d[6] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F)); r->d[7] = t & 0xFFFFFFFFULL; SECP256K1_SCALAR_VERIFY(r); VERIFY_CHECK((t >> 32) == 0); } static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { int over; r->d[0] = secp256k1_read_be32(&b32[28]); r->d[1] = secp256k1_read_be32(&b32[24]); r->d[2] = secp256k1_read_be32(&b32[20]); r->d[3] = secp256k1_read_be32(&b32[16]); r->d[4] = secp256k1_read_be32(&b32[12]); r->d[5] = secp256k1_read_be32(&b32[8]); r->d[6] = secp256k1_read_be32(&b32[4]); r->d[7] = secp256k1_read_be32(&b32[0]); over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r)); if (overflow) { *overflow = over; } SECP256K1_SCALAR_VERIFY(r); } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { SECP256K1_SCALAR_VERIFY(a); secp256k1_write_be32(&bin[0], a->d[7]); secp256k1_write_be32(&bin[4], a->d[6]); secp256k1_write_be32(&bin[8], a->d[5]); secp256k1_write_be32(&bin[12], a->d[4]); secp256k1_write_be32(&bin[16], a->d[3]); secp256k1_write_be32(&bin[20], a->d[2]); secp256k1_write_be32(&bin[24], a->d[1]); secp256k1_write_be32(&bin[28], a->d[0]); } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { SECP256K1_SCALAR_VERIFY(a); return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0); uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1; SECP256K1_SCALAR_VERIFY(a); r->d[0] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[1]) + SECP256K1_N_1; r->d[1] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[2]) + SECP256K1_N_2; r->d[2] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[3]) + SECP256K1_N_3; r->d[3] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[4]) + SECP256K1_N_4; r->d[4] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[5]) + SECP256K1_N_5; r->d[5] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[6]) + SECP256K1_N_6; r->d[6] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[7]) + SECP256K1_N_7; r->d[7] = t & nonzero; SECP256K1_SCALAR_VERIFY(r); } static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) { /* Writing `/` for field division and `//` for integer division, we compute * * a/2 = (a - (a&1))/2 + (a&1)/2 * = (a >> 1) + (a&1 ? 1/2 : 0) * = (a >> 1) + (a&1 ? n//2+1 : 0), * * where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n). * For n//2, we have the constants SECP256K1_N_H_0, ... * * This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here: * - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2 * - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2 * Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n. */ uint32_t mask = -(uint32_t)(a->d[0] & 1U); uint64_t t = (uint32_t)((a->d[0] >> 1) | (a->d[1] << 31)); SECP256K1_SCALAR_VERIFY(a); t += (SECP256K1_N_H_0 + 1U) & mask; r->d[0] = t; t >>= 32; t += (uint32_t)((a->d[1] >> 1) | (a->d[2] << 31)); t += SECP256K1_N_H_1 & mask; r->d[1] = t; t >>= 32; t += (uint32_t)((a->d[2] >> 1) | (a->d[3] << 31)); t += SECP256K1_N_H_2 & mask; r->d[2] = t; t >>= 32; t += (uint32_t)((a->d[3] >> 1) | (a->d[4] << 31)); t += SECP256K1_N_H_3 & mask; r->d[3] = t; t >>= 32; t += (uint32_t)((a->d[4] >> 1) | (a->d[5] << 31)); t += SECP256K1_N_H_4 & mask; r->d[4] = t; t >>= 32; t += (uint32_t)((a->d[5] >> 1) | (a->d[6] << 31)); t += SECP256K1_N_H_5 & mask; r->d[5] = t; t >>= 32; t += (uint32_t)((a->d[6] >> 1) | (a->d[7] << 31)); t += SECP256K1_N_H_6 & mask; r->d[6] = t; t >>= 32; r->d[7] = (uint32_t)t + (uint32_t)(a->d[7] >> 1) + (SECP256K1_N_H_7 & mask); /* The line above only computed the bottom 32 bits of r->d[7]. Redo the computation * in full 64 bits to make sure the top 32 bits are indeed zero. */ VERIFY_CHECK((t + (a->d[7] >> 1) + (SECP256K1_N_H_7 & mask)) >> 32 == 0); SECP256K1_SCALAR_VERIFY(r); } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { SECP256K1_SCALAR_VERIFY(a); return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { int yes = 0; int no = 0; SECP256K1_SCALAR_VERIFY(a); no |= (a->d[7] < SECP256K1_N_H_7); yes |= (a->d[7] > SECP256K1_N_H_7) & ~no; no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */ no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */ no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */ no |= (a->d[3] < SECP256K1_N_H_3) & ~yes; yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; yes |= (a->d[2] > SECP256K1_N_H_2) & ~no; no |= (a->d[1] < SECP256K1_N_H_1) & ~yes; yes |= (a->d[1] > SECP256K1_N_H_1) & ~no; yes |= (a->d[0] > SECP256K1_N_H_0) & ~no; return yes; } static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { /* If we are flag = 0, mask = 00...00 and this is a no-op; * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ volatile int vflag = flag; uint32_t mask = -vflag; uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0); uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); SECP256K1_SCALAR_VERIFY(r); r->d[0] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); r->d[1] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); r->d[2] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); r->d[3] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask); r->d[4] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask); r->d[5] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask); r->d[6] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask); r->d[7] = t & nonzero; SECP256K1_SCALAR_VERIFY(r); return 2 * (mask == 0) - 1; } /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ #define muladd(a,b) { \ uint32_t tl, th; \ { \ uint64_t t = (uint64_t)a * b; \ th = t >> 32; /* at most 0xFFFFFFFE */ \ tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ th += (c0 < tl); /* at most 0xFFFFFFFF */ \ c1 += th; /* overflow is handled on the next line */ \ c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ } /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */ #define muladd_fast(a,b) { \ uint32_t tl, th; \ { \ uint64_t t = (uint64_t)a * b; \ th = t >> 32; /* at most 0xFFFFFFFE */ \ tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ th += (c0 < tl); /* at most 0xFFFFFFFF */ \ c1 += th; /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK(c1 >= th); \ } /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ #define sumadd(a) { \ unsigned int over; \ c0 += (a); /* overflow is handled on the next line */ \ over = (c0 < (a)); \ c1 += over; /* overflow is handled on the next line */ \ c2 += (c1 < over); /* never overflows by contract */ \ } /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ #define sumadd_fast(a) { \ c0 += (a); /* overflow is handled on the next line */ \ c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ VERIFY_CHECK(c2 == 0); \ } /** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */ #define extract(n) { \ (n) = c0; \ c0 = c1; \ c1 = c2; \ c2 = 0; \ } /** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */ #define extract_fast(n) { \ (n) = c0; \ c0 = c1; \ c1 = 0; \ VERIFY_CHECK(c2 == 0); \ } static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) { uint64_t c; uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15]; uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12; uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8; /* 96 bit accumulator. */ uint32_t c0, c1, c2; /* Reduce 512 bits into 385. */ /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */ c0 = l[0]; c1 = 0; c2 = 0; muladd_fast(n0, SECP256K1_N_C_0); extract_fast(m0); sumadd_fast(l[1]); muladd(n1, SECP256K1_N_C_0); muladd(n0, SECP256K1_N_C_1); extract(m1); sumadd(l[2]); muladd(n2, SECP256K1_N_C_0); muladd(n1, SECP256K1_N_C_1); muladd(n0, SECP256K1_N_C_2); extract(m2); sumadd(l[3]); muladd(n3, SECP256K1_N_C_0); muladd(n2, SECP256K1_N_C_1); muladd(n1, SECP256K1_N_C_2); muladd(n0, SECP256K1_N_C_3); extract(m3); sumadd(l[4]); muladd(n4, SECP256K1_N_C_0); muladd(n3, SECP256K1_N_C_1); muladd(n2, SECP256K1_N_C_2); muladd(n1, SECP256K1_N_C_3); sumadd(n0); extract(m4); sumadd(l[5]); muladd(n5, SECP256K1_N_C_0); muladd(n4, SECP256K1_N_C_1); muladd(n3, SECP256K1_N_C_2); muladd(n2, SECP256K1_N_C_3); sumadd(n1); extract(m5); sumadd(l[6]); muladd(n6, SECP256K1_N_C_0); muladd(n5, SECP256K1_N_C_1); muladd(n4, SECP256K1_N_C_2); muladd(n3, SECP256K1_N_C_3); sumadd(n2); extract(m6); sumadd(l[7]); muladd(n7, SECP256K1_N_C_0); muladd(n6, SECP256K1_N_C_1); muladd(n5, SECP256K1_N_C_2); muladd(n4, SECP256K1_N_C_3); sumadd(n3); extract(m7); muladd(n7, SECP256K1_N_C_1); muladd(n6, SECP256K1_N_C_2); muladd(n5, SECP256K1_N_C_3); sumadd(n4); extract(m8); muladd(n7, SECP256K1_N_C_2); muladd(n6, SECP256K1_N_C_3); sumadd(n5); extract(m9); muladd(n7, SECP256K1_N_C_3); sumadd(n6); extract(m10); sumadd_fast(n7); extract_fast(m11); VERIFY_CHECK(c0 <= 1); m12 = c0; /* Reduce 385 bits into 258. */ /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */ c0 = m0; c1 = 0; c2 = 0; muladd_fast(m8, SECP256K1_N_C_0); extract_fast(p0); sumadd_fast(m1); muladd(m9, SECP256K1_N_C_0); muladd(m8, SECP256K1_N_C_1); extract(p1); sumadd(m2); muladd(m10, SECP256K1_N_C_0); muladd(m9, SECP256K1_N_C_1); muladd(m8, SECP256K1_N_C_2); extract(p2); sumadd(m3); muladd(m11, SECP256K1_N_C_0); muladd(m10, SECP256K1_N_C_1); muladd(m9, SECP256K1_N_C_2); muladd(m8, SECP256K1_N_C_3); extract(p3); sumadd(m4); muladd(m12, SECP256K1_N_C_0); muladd(m11, SECP256K1_N_C_1); muladd(m10, SECP256K1_N_C_2); muladd(m9, SECP256K1_N_C_3); sumadd(m8); extract(p4); sumadd(m5); muladd(m12, SECP256K1_N_C_1); muladd(m11, SECP256K1_N_C_2); muladd(m10, SECP256K1_N_C_3); sumadd(m9); extract(p5); sumadd(m6); muladd(m12, SECP256K1_N_C_2); muladd(m11, SECP256K1_N_C_3); sumadd(m10); extract(p6); sumadd_fast(m7); muladd_fast(m12, SECP256K1_N_C_3); sumadd_fast(m11); extract_fast(p7); p8 = c0 + m12; VERIFY_CHECK(p8 <= 2); /* Reduce 258 bits into 256. */ /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */ c = p0 + (uint64_t)SECP256K1_N_C_0 * p8; r->d[0] = c & 0xFFFFFFFFUL; c >>= 32; c += p1 + (uint64_t)SECP256K1_N_C_1 * p8; r->d[1] = c & 0xFFFFFFFFUL; c >>= 32; c += p2 + (uint64_t)SECP256K1_N_C_2 * p8; r->d[2] = c & 0xFFFFFFFFUL; c >>= 32; c += p3 + (uint64_t)SECP256K1_N_C_3 * p8; r->d[3] = c & 0xFFFFFFFFUL; c >>= 32; c += p4 + (uint64_t)p8; r->d[4] = c & 0xFFFFFFFFUL; c >>= 32; c += p5; r->d[5] = c & 0xFFFFFFFFUL; c >>= 32; c += p6; r->d[6] = c & 0xFFFFFFFFUL; c >>= 32; c += p7; r->d[7] = c & 0xFFFFFFFFUL; c >>= 32; /* Final reduction of r. */ secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); } static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) { /* 96 bit accumulator. */ uint32_t c0 = 0, c1 = 0, c2 = 0; /* l[0..15] = a[0..7] * b[0..7]. */ muladd_fast(a->d[0], b->d[0]); extract_fast(l[0]); muladd(a->d[0], b->d[1]); muladd(a->d[1], b->d[0]); extract(l[1]); muladd(a->d[0], b->d[2]); muladd(a->d[1], b->d[1]); muladd(a->d[2], b->d[0]); extract(l[2]); muladd(a->d[0], b->d[3]); muladd(a->d[1], b->d[2]); muladd(a->d[2], b->d[1]); muladd(a->d[3], b->d[0]); extract(l[3]); muladd(a->d[0], b->d[4]); muladd(a->d[1], b->d[3]); muladd(a->d[2], b->d[2]); muladd(a->d[3], b->d[1]); muladd(a->d[4], b->d[0]); extract(l[4]); muladd(a->d[0], b->d[5]); muladd(a->d[1], b->d[4]); muladd(a->d[2], b->d[3]); muladd(a->d[3], b->d[2]); muladd(a->d[4], b->d[1]); muladd(a->d[5], b->d[0]); extract(l[5]); muladd(a->d[0], b->d[6]); muladd(a->d[1], b->d[5]); muladd(a->d[2], b->d[4]); muladd(a->d[3], b->d[3]); muladd(a->d[4], b->d[2]); muladd(a->d[5], b->d[1]); muladd(a->d[6], b->d[0]); extract(l[6]); muladd(a->d[0], b->d[7]); muladd(a->d[1], b->d[6]); muladd(a->d[2], b->d[5]); muladd(a->d[3], b->d[4]); muladd(a->d[4], b->d[3]); muladd(a->d[5], b->d[2]); muladd(a->d[6], b->d[1]); muladd(a->d[7], b->d[0]); extract(l[7]); muladd(a->d[1], b->d[7]); muladd(a->d[2], b->d[6]); muladd(a->d[3], b->d[5]); muladd(a->d[4], b->d[4]); muladd(a->d[5], b->d[3]); muladd(a->d[6], b->d[2]); muladd(a->d[7], b->d[1]); extract(l[8]); muladd(a->d[2], b->d[7]); muladd(a->d[3], b->d[6]); muladd(a->d[4], b->d[5]); muladd(a->d[5], b->d[4]); muladd(a->d[6], b->d[3]); muladd(a->d[7], b->d[2]); extract(l[9]); muladd(a->d[3], b->d[7]); muladd(a->d[4], b->d[6]); muladd(a->d[5], b->d[5]); muladd(a->d[6], b->d[4]); muladd(a->d[7], b->d[3]); extract(l[10]); muladd(a->d[4], b->d[7]); muladd(a->d[5], b->d[6]); muladd(a->d[6], b->d[5]); muladd(a->d[7], b->d[4]); extract(l[11]); muladd(a->d[5], b->d[7]); muladd(a->d[6], b->d[6]); muladd(a->d[7], b->d[5]); extract(l[12]); muladd(a->d[6], b->d[7]); muladd(a->d[7], b->d[6]); extract(l[13]); muladd_fast(a->d[7], b->d[7]); extract_fast(l[14]); VERIFY_CHECK(c1 == 0); l[15] = c0; } #undef sumadd #undef sumadd_fast #undef muladd #undef muladd_fast #undef extract #undef extract_fast static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { uint32_t l[16]; SECP256K1_SCALAR_VERIFY(a); SECP256K1_SCALAR_VERIFY(b); secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); SECP256K1_SCALAR_VERIFY(r); } static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { SECP256K1_SCALAR_VERIFY(k); r1->d[0] = k->d[0]; r1->d[1] = k->d[1]; r1->d[2] = k->d[2]; r1->d[3] = k->d[3]; r1->d[4] = 0; r1->d[5] = 0; r1->d[6] = 0; r1->d[7] = 0; r2->d[0] = k->d[4]; r2->d[1] = k->d[5]; r2->d[2] = k->d[6]; r2->d[3] = k->d[7]; r2->d[4] = 0; r2->d[5] = 0; r2->d[6] = 0; r2->d[7] = 0; SECP256K1_SCALAR_VERIFY(r1); SECP256K1_SCALAR_VERIFY(r2); } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { SECP256K1_SCALAR_VERIFY(a); SECP256K1_SCALAR_VERIFY(b); return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0; } SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { uint32_t l[16]; unsigned int shiftlimbs; unsigned int shiftlow; unsigned int shifthigh; SECP256K1_SCALAR_VERIFY(a); SECP256K1_SCALAR_VERIFY(b); VERIFY_CHECK(shift >= 256); secp256k1_scalar_mul_512(l, a, b); shiftlimbs = shift >> 5; shiftlow = shift & 0x1F; shifthigh = 32 - shiftlow; r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0; secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); SECP256K1_SCALAR_VERIFY(r); } static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { uint32_t mask0, mask1; volatile int vflag = flag; SECP256K1_SCALAR_VERIFY(a); SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d)); mask0 = vflag + ~((uint32_t)0); mask1 = ~mask0; r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1); r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1); r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1); r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1); r->d[4] = (r->d[4] & mask0) | (a->d[4] & mask1); r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1); r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1); r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1); SECP256K1_SCALAR_VERIFY(r); } static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) { const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4], a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8]; /* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and * have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8). */ VERIFY_CHECK(a0 >> 30 == 0); VERIFY_CHECK(a1 >> 30 == 0); VERIFY_CHECK(a2 >> 30 == 0); VERIFY_CHECK(a3 >> 30 == 0); VERIFY_CHECK(a4 >> 30 == 0); VERIFY_CHECK(a5 >> 30 == 0); VERIFY_CHECK(a6 >> 30 == 0); VERIFY_CHECK(a7 >> 30 == 0); VERIFY_CHECK(a8 >> 16 == 0); r->d[0] = a0 | a1 << 30; r->d[1] = a1 >> 2 | a2 << 28; r->d[2] = a2 >> 4 | a3 << 26; r->d[3] = a3 >> 6 | a4 << 24; r->d[4] = a4 >> 8 | a5 << 22; r->d[5] = a5 >> 10 | a6 << 20; r->d[6] = a6 >> 12 | a7 << 18; r->d[7] = a7 >> 14 | a8 << 16; SECP256K1_SCALAR_VERIFY(r); } static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) { const uint32_t M30 = UINT32_MAX >> 2; const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3], a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7]; SECP256K1_SCALAR_VERIFY(a); r->v[0] = a0 & M30; r->v[1] = (a0 >> 30 | a1 << 2) & M30; r->v[2] = (a1 >> 28 | a2 << 4) & M30; r->v[3] = (a2 >> 26 | a3 << 6) & M30; r->v[4] = (a3 >> 24 | a4 << 8) & M30; r->v[5] = (a4 >> 22 | a5 << 10) & M30; r->v[6] = (a5 >> 20 | a6 << 12) & M30; r->v[7] = (a6 >> 18 | a7 << 14) & M30; r->v[8] = a7 >> 16; } static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar = { {{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}}, 0x2A774EC1L }; static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { secp256k1_modinv32_signed30 s; #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif SECP256K1_SCALAR_VERIFY(x); secp256k1_scalar_to_signed30(&s, x); secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed30(r, &s); SECP256K1_SCALAR_VERIFY(r); VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); } static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { secp256k1_modinv32_signed30 s; #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif SECP256K1_SCALAR_VERIFY(x); secp256k1_scalar_to_signed30(&s, x); secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed30(r, &s); SECP256K1_SCALAR_VERIFY(r); VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); } SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { SECP256K1_SCALAR_VERIFY(a); return !(a->d[0] & 1); } #endif /* SECP256K1_SCALAR_REPR_IMPL_H */