/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_SCALAR_REPR_IMPL_H_ #define _SECP256K1_SCALAR_REPR_IMPL_H_ typedef unsigned __int128 uint128_t; /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL) #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL) #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) /* Limbs of 2^256 minus the secp256k1 order. */ #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) #define SECP256K1_N_C_1 (~SECP256K1_N_1) #define SECP256K1_N_C_2 (1) /* Limbs of half the secp256k1 order. */ #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL) #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL) #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL) SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) { r->d[0] = 0; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; } SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar_t *r, unsigned int v) { r->d[0] = v; r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6); return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar_t *a, unsigned int offset, unsigned int count) { VERIFY_CHECK(count < 32); VERIFY_CHECK(offset + count <= 256); if ((offset + count - 1) >> 6 == offset >> 6) { return secp256k1_scalar_get_bits(a, offset, count); } else { VERIFY_CHECK((offset >> 6) + 1 < 4); return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1); } } SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) { int yes = 0; int no = 0; no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */ no |= (a->d[2] < SECP256K1_N_2); yes |= (a->d[2] > SECP256K1_N_2) & ~no; no |= (a->d[1] < SECP256K1_N_1); yes |= (a->d[1] > SECP256K1_N_1) & ~no; yes |= (a->d[0] >= SECP256K1_N_0) & ~no; return yes; } SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) { VERIFY_CHECK(overflow <= 1); uint128_t t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0; r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1; r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2; r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint64_t)r->d[3]; r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; return overflow; } static int secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { uint128_t t = (uint128_t)a->d[0] + b->d[0]; r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)a->d[1] + b->d[1]; r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)a->d[2] + b->d[2]; r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)a->d[3] + b->d[3]; r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; int overflow = t + secp256k1_scalar_check_overflow(r); VERIFY_CHECK(overflow == 0 || overflow == 1); secp256k1_scalar_reduce(r, overflow); return overflow; } static void secp256k1_scalar_add_bit(secp256k1_scalar_t *r, unsigned int bit) { VERIFY_CHECK(bit < 256); uint128_t t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F)); r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F)); r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F)); r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F)); r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; #ifdef VERIFY VERIFY_CHECK((t >> 64) == 0); VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); #endif } static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) { r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56; r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56; r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56; r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56; int over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r)); if (overflow) { *overflow = over; } } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) { bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3]; bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2]; bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1]; bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) { return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0; } static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0); uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1; r->d[0] = t & nonzero; t >>= 64; t += (uint128_t)(~a->d[1]) + SECP256K1_N_1; r->d[1] = t & nonzero; t >>= 64; t += (uint128_t)(~a->d[2]) + SECP256K1_N_2; r->d[2] = t & nonzero; t >>= 64; t += (uint128_t)(~a->d[3]) + SECP256K1_N_3; r->d[3] = t & nonzero; } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) { return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0; } static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) { int yes = 0; int no = 0; no |= (a->d[3] < SECP256K1_N_H_3); yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */ no |= (a->d[1] < SECP256K1_N_H_1) & ~yes; yes |= (a->d[1] > SECP256K1_N_H_1) & ~no; yes |= (a->d[0] > SECP256K1_N_H_0) & ~no; return yes; } /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ #define muladd(a,b) { \ uint64_t tl, th; \ { \ uint128_t t = (uint128_t)a * b; \ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ c1 += th; /* overflow is handled on the next line */ \ c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ } /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */ #define muladd_fast(a,b) { \ uint64_t tl, th; \ { \ uint128_t t = (uint128_t)a * b; \ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ c1 += th; /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK(c1 >= th); \ } /** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ #define muladd2(a,b) { \ uint64_t tl, th; \ { \ uint128_t t = (uint128_t)a * b; \ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ tl = t; \ } \ uint64_t th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \ c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ uint64_t tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \ th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ c0 += tl2; /* overflow is handled on the next line */ \ th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ c1 += th2; /* overflow is handled on the next line */ \ c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ } /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ #define sumadd(a) { \ c0 += (a); /* overflow is handled on the next line */ \ unsigned int over = (c0 < (a)) ? 1 : 0; \ c1 += over; /* overflow is handled on the next line */ \ c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ } /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ #define sumadd_fast(a) { \ c0 += (a); /* overflow is handled on the next line */ \ c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ VERIFY_CHECK(c2 == 0); \ } /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */ #define extract(n) { \ (n) = c0; \ c0 = c1; \ c1 = c2; \ c2 = 0; \ } /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */ #define extract_fast(n) { \ (n) = c0; \ c0 = c1; \ c1 = 0; \ VERIFY_CHECK(c2 == 0); \ } static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) { uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7]; /* 160 bit accumulator. */ uint64_t c0, c1; uint32_t c2; /* Reduce 512 bits into 385. */ /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */ c0 = l[0]; c1 = 0; c2 = 0; muladd_fast(n0, SECP256K1_N_C_0); uint64_t m0; extract_fast(m0); sumadd_fast(l[1]); muladd(n1, SECP256K1_N_C_0); muladd(n0, SECP256K1_N_C_1); uint64_t m1; extract(m1); sumadd(l[2]); muladd(n2, SECP256K1_N_C_0); muladd(n1, SECP256K1_N_C_1); sumadd(n0); uint64_t m2; extract(m2); sumadd(l[3]); muladd(n3, SECP256K1_N_C_0); muladd(n2, SECP256K1_N_C_1); sumadd(n1); uint64_t m3; extract(m3); muladd(n3, SECP256K1_N_C_1); sumadd(n2); uint64_t m4; extract(m4); sumadd_fast(n3); uint64_t m5; extract_fast(m5); VERIFY_CHECK(c0 <= 1); uint32_t m6 = c0; /* Reduce 385 bits into 258. */ /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */ c0 = m0; c1 = 0; c2 = 0; muladd_fast(m4, SECP256K1_N_C_0); uint64_t p0; extract_fast(p0); sumadd_fast(m1); muladd(m5, SECP256K1_N_C_0); muladd(m4, SECP256K1_N_C_1); uint64_t p1; extract(p1); sumadd(m2); muladd(m6, SECP256K1_N_C_0); muladd(m5, SECP256K1_N_C_1); sumadd(m4); uint64_t p2; extract(p2); sumadd_fast(m3); muladd_fast(m6, SECP256K1_N_C_1); sumadd_fast(m5); uint64_t p3; extract_fast(p3); uint32_t p4 = c0 + m6; VERIFY_CHECK(p4 <= 2); /* Reduce 258 bits into 256. */ /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */ uint128_t c = p0 + (uint128_t)SECP256K1_N_C_0 * p4; r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; c += p1 + (uint128_t)SECP256K1_N_C_1 * p4; r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; c += p2 + (uint128_t)p4; r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; c += p3; r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; /* Final reduction of r. */ secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); } static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { /* 160 bit accumulator. */ uint64_t c0 = 0, c1 = 0; uint32_t c2 = 0; /* l[0..7] = a[0..3] * b[0..3]. */ muladd_fast(a->d[0], b->d[0]); extract_fast(l[0]); muladd(a->d[0], b->d[1]); muladd(a->d[1], b->d[0]); extract(l[1]); muladd(a->d[0], b->d[2]); muladd(a->d[1], b->d[1]); muladd(a->d[2], b->d[0]); extract(l[2]); muladd(a->d[0], b->d[3]); muladd(a->d[1], b->d[2]); muladd(a->d[2], b->d[1]); muladd(a->d[3], b->d[0]); extract(l[3]); muladd(a->d[1], b->d[3]); muladd(a->d[2], b->d[2]); muladd(a->d[3], b->d[1]); extract(l[4]); muladd(a->d[2], b->d[3]); muladd(a->d[3], b->d[2]); extract(l[5]); muladd_fast(a->d[3], b->d[3]); extract_fast(l[6]); VERIFY_CHECK(c1 <= 0); l[7] = c0; } static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar_t *a) { /* 160 bit accumulator. */ uint64_t c0 = 0, c1 = 0; uint32_t c2 = 0; /* l[0..7] = a[0..3] * b[0..3]. */ muladd_fast(a->d[0], a->d[0]); extract_fast(l[0]); muladd2(a->d[0], a->d[1]); extract(l[1]); muladd2(a->d[0], a->d[2]); muladd(a->d[1], a->d[1]); extract(l[2]); muladd2(a->d[0], a->d[3]); muladd2(a->d[1], a->d[2]); extract(l[3]); muladd2(a->d[1], a->d[3]); muladd(a->d[2], a->d[2]); extract(l[4]); muladd2(a->d[2], a->d[3]); extract(l[5]); muladd_fast(a->d[3], a->d[3]); extract_fast(l[6]); VERIFY_CHECK(c1 == 0); l[7] = c0; } #undef sumadd #undef sumadd_fast #undef muladd #undef muladd_fast #undef muladd2 #undef extract #undef extract_fast static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { uint64_t l[8]; secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); } static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) { uint64_t l[8]; secp256k1_scalar_sqr_512(l, a); secp256k1_scalar_reduce_512(r, l); } static void secp256k1_scalar_split_128(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { r1->d[0] = a->d[0]; r1->d[1] = a->d[1]; r1->d[2] = 0; r1->d[3] = 0; r2->d[0] = a->d[2]; r2->d[1] = a->d[3]; r2->d[2] = 0; r2->d[3] = 0; } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) { return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; } SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b, unsigned int shift) { VERIFY_CHECK(shift >= 256); uint64_t l[8]; secp256k1_scalar_mul_512(l, a, b); unsigned int shiftlimbs = shift >> 6; unsigned int shiftlow = shift & 0x3F; unsigned int shifthigh = 64 - shiftlow; r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0; if ((l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1) { secp256k1_scalar_add_bit(r, 0); } } #endif