/*********************************************************************** * Copyright (c) 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_SCALAR_H #define SECP256K1_SCALAR_H #include "util.h" #if defined(EXHAUSTIVE_TEST_ORDER) #include "scalar_low.h" #elif defined(SECP256K1_WIDEMUL_INT128) #include "scalar_4x64.h" #elif defined(SECP256K1_WIDEMUL_INT64) #include "scalar_8x32.h" #else #error "Please select wide multiplication implementation" #endif /** Clear a scalar to prevent the leak of sensitive data. */ static void secp256k1_scalar_clear(secp256k1_scalar *r); /** Access bits (1 < count <= 32) from a scalar. All requested bits must belong to the same 32-bit limb. */ static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count); /** Access bits (1 < count <= 32) from a scalar. offset + count must be < 256. Not constant time in offset and count. */ static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count); /** Set a scalar from a big endian byte array. The scalar will be reduced modulo group order `n`. * In: bin: pointer to a 32-byte array. * Out: r: scalar to be set. * overflow: non-zero if the scalar was bigger or equal to `n` before reduction, zero otherwise (can be NULL). */ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow); /** Set a scalar from a big endian byte array and returns 1 if it is a valid * seckey and 0 otherwise. */ static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin); /** Set a scalar to an unsigned integer. */ static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v); /** Convert a scalar to a byte array. */ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a); /** Add two scalars together (modulo the group order). Returns whether it overflowed. */ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); /** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag); /** Multiply two scalars (modulo the group order). */ static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); /** Compute the inverse of a scalar (modulo the group order). */ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a); /** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a); /** Compute the complement of a scalar (modulo the group order). */ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a); /** Multiply a scalar with the multiplicative inverse of 2. */ static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a); /** Check whether a scalar equals zero. */ static int secp256k1_scalar_is_zero(const secp256k1_scalar *a); /** Check whether a scalar equals one. */ static int secp256k1_scalar_is_one(const secp256k1_scalar *a); /** Check whether a scalar, considered as an nonnegative integer, is even. */ static int secp256k1_scalar_is_even(const secp256k1_scalar *a); /** Check whether a scalar is higher than the group order divided by 2. */ static int secp256k1_scalar_is_high(const secp256k1_scalar *a); /** Conditionally negate a number, in constant time. * Returns -1 if the number was negated, 1 otherwise */ static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag); /** Compare two scalars. */ static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b); /** Find r1 and r2 such that r1+r2*2^128 = k. */ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k); /** Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their * negations are maximum 128 bits long (see secp256k1_ge_mul_lambda). It is * required that r1, r2, and k all point to different objects. */ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k); /** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag); /** Check invariants on a scalar (no-op unless VERIFY is enabled). */ static void secp256k1_scalar_verify(const secp256k1_scalar *r); #define SECP256K1_SCALAR_VERIFY(r) secp256k1_scalar_verify(r) #endif /* SECP256K1_SCALAR_H */