// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #ifdef WIN32 #include // for Windows API #include #endif #include // for LogPrint() #include // for WAIT_LOCK #include // for GetTime() #include #include #include #include #ifndef WIN32 #include #include #endif #ifdef HAVE_SYS_GETRANDOM #include #include #endif #if defined(HAVE_GETENTROPY) || (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)) #include #endif #if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) #include #endif #ifdef HAVE_SYSCTL_ARND #include // for ARRAYLEN #include #endif #include #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) #include #endif #include #include #include [[noreturn]] static void RandFailure() { LogPrintf("Failed to read randomness, aborting\n"); std::abort(); } static inline int64_t GetPerformanceCounter() noexcept { // Read the hardware time stamp counter when available. // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information. #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) return __rdtsc(); #elif !defined(_MSC_VER) && defined(__i386__) uint64_t r = 0; __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair. return r; #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__)) uint64_t r1 = 0, r2 = 0; __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx. return (r2 << 32) | r1; #else // Fall back to using C++11 clock (usually microsecond or nanosecond precision) return std::chrono::high_resolution_clock::now().time_since_epoch().count(); #endif } #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) static bool rdrand_supported = false; static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000; static void InitHardwareRand() { uint32_t eax, ebx, ecx, edx; if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) { rdrand_supported = true; } } static void ReportHardwareRand() { if (rdrand_supported) { // This must be done in a separate function, as HWRandInit() may be indirectly called // from global constructors, before logging is initialized. LogPrintf("Using RdRand as an additional entropy source\n"); } } #else /* Access to other hardware random number generators could be added here later, * assuming it is sufficiently fast (in the order of a few hundred CPU cycles). * Slower sources should probably be invoked separately, and/or only from * RandAddSeedSleep (which is called during idle background operation). */ static void InitHardwareRand() {} static void ReportHardwareRand() {} #endif static bool GetHardwareRand(unsigned char* ent32) noexcept { #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) if (rdrand_supported) { uint8_t ok; // Not all assemblers support the rdrand instruction, write it in hex. #ifdef __i386__ for (int iter = 0; iter < 4; ++iter) { uint32_t r1, r2; __asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax ".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx "setc %2" : "=a"(r1), "=d"(r2), "=q"(ok) :: "cc"); if (!ok) return false; WriteLE32(ent32 + 8 * iter, r1); WriteLE32(ent32 + 8 * iter + 4, r2); } #else uint64_t r1, r2, r3, r4; __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax "0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx "0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx "0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx "setc %4" : "=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc"); if (!ok) return false; WriteLE64(ent32, r1); WriteLE64(ent32 + 8, r2); WriteLE64(ent32 + 16, r3); WriteLE64(ent32 + 24, r4); #endif return true; } #endif return false; } static void RandAddSeedPerfmon(CSHA512& hasher) { #ifdef WIN32 // Don't need this on Linux, OpenSSL automatically uses /dev/urandom // Seed with the entire set of perfmon data // This can take up to 2 seconds, so only do it every 10 minutes static int64_t nLastPerfmon; if (GetTime() < nLastPerfmon + 10 * 60) return; nLastPerfmon = GetTime(); std::vector vData(250000, 0); long ret = 0; unsigned long nSize = 0; const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data while (true) { nSize = vData.size(); ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", nullptr, nullptr, vData.data(), &nSize); if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize) break; vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially } RegCloseKey(HKEY_PERFORMANCE_DATA); if (ret == ERROR_SUCCESS) { hasher.Write(vData.data(), nSize); memory_cleanse(vData.data(), nSize); } else { // Performance data is only a best-effort attempt at improving the // situation when the OS randomness (and other sources) aren't // adequate. As a result, failure to read it is isn't considered critical, // so we don't call RandFailure(). // TODO: Add logging when the logger is made functional before global // constructors have been invoked. } #endif } #ifndef WIN32 /** Fallback: get 32 bytes of system entropy from /dev/urandom. The most * compatible way to get cryptographic randomness on UNIX-ish platforms. */ static void GetDevURandom(unsigned char *ent32) { int f = open("/dev/urandom", O_RDONLY); if (f == -1) { RandFailure(); } int have = 0; do { ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have); if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) { close(f); RandFailure(); } have += n; } while (have < NUM_OS_RANDOM_BYTES); close(f); } #endif /** Get 32 bytes of system entropy. */ void GetOSRand(unsigned char *ent32) { #if defined(WIN32) HCRYPTPROV hProvider; int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); if (!ret) { RandFailure(); } ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32); if (!ret) { RandFailure(); } CryptReleaseContext(hProvider, 0); #elif defined(HAVE_SYS_GETRANDOM) /* Linux. From the getrandom(2) man page: * "If the urandom source has been initialized, reads of up to 256 bytes * will always return as many bytes as requested and will not be * interrupted by signals." */ int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0); if (rv != NUM_OS_RANDOM_BYTES) { if (rv < 0 && errno == ENOSYS) { /* Fallback for kernel <3.17: the return value will be -1 and errno * ENOSYS if the syscall is not available, in that case fall back * to /dev/urandom. */ GetDevURandom(ent32); } else { RandFailure(); } } #elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__) /* On OpenBSD this can return up to 256 bytes of entropy, will return an * error if more are requested. * The call cannot return less than the requested number of bytes. getentropy is explicitly limited to openbsd here, as a similar (but not the same) function may exist on other platforms via glibc. */ if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } #elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) // We need a fallback for OSX < 10.12 if (&getentropy != nullptr) { if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } } else { GetDevURandom(ent32); } #elif defined(HAVE_SYSCTL_ARND) /* FreeBSD and similar. It is possible for the call to return less * bytes than requested, so need to read in a loop. */ static const int name[2] = {CTL_KERN, KERN_ARND}; int have = 0; do { size_t len = NUM_OS_RANDOM_BYTES - have; if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, nullptr, 0) != 0) { RandFailure(); } have += len; } while (have < NUM_OS_RANDOM_BYTES); #else /* Fall back to /dev/urandom if there is no specific method implemented to * get system entropy for this OS. */ GetDevURandom(ent32); #endif } void LockingCallbackOpenSSL(int mode, int i, const char* file, int line); namespace { class RNGState { Mutex m_mutex; unsigned char m_state[32] GUARDED_BY(m_mutex) = {0}; uint64_t m_counter GUARDED_BY(m_mutex) = 0; bool m_strongly_seeded GUARDED_BY(m_mutex) = false; std::unique_ptr m_mutex_openssl; public: RNGState() noexcept { InitHardwareRand(); // Init OpenSSL library multithreading support m_mutex_openssl.reset(new Mutex[CRYPTO_num_locks()]); CRYPTO_set_locking_callback(LockingCallbackOpenSSL); // OpenSSL can optionally load a config file which lists optional loadable modules and engines. // We don't use them so we don't require the config. However some of our libs may call functions // which attempt to load the config file, possibly resulting in an exit() or crash if it is missing // or corrupt. Explicitly tell OpenSSL not to try to load the file. The result for our libs will be // that the config appears to have been loaded and there are no modules/engines available. OPENSSL_no_config(); } ~RNGState() { // Securely erase the memory used by the OpenSSL PRNG RAND_cleanup(); // Shutdown OpenSSL library multithreading support CRYPTO_set_locking_callback(nullptr); } /** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher. * * If this function has never been called with strong_seed = true, false is returned. */ bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed) noexcept { assert(num <= 32); unsigned char buf[64]; static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size"); bool ret; { LOCK(m_mutex); ret = (m_strongly_seeded |= strong_seed); // Write the current state of the RNG into the hasher hasher.Write(m_state, 32); // Write a new counter number into the state hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter)); ++m_counter; // Finalize the hasher hasher.Finalize(buf); // Store the last 32 bytes of the hash output as new RNG state. memcpy(m_state, buf + 32, 32); } // If desired, copy (up to) the first 32 bytes of the hash output as output. if (num) { assert(out != nullptr); memcpy(out, buf, num); } // Best effort cleanup of internal state hasher.Reset(); memory_cleanse(buf, 64); return ret; } Mutex& GetOpenSSLMutex(int i) { return m_mutex_openssl[i]; } }; RNGState& GetRNGState() noexcept { // This C++11 idiom relies on the guarantee that static variable are initialized // on first call, even when multiple parallel calls are permitted. static std::vector> g_rng(1); return g_rng[0]; } } void LockingCallbackOpenSSL(int mode, int i, const char* file, int line) NO_THREAD_SAFETY_ANALYSIS { RNGState& rng = GetRNGState(); if (mode & CRYPTO_LOCK) { rng.GetOpenSSLMutex(i).lock(); } else { rng.GetOpenSSLMutex(i).unlock(); } } /* A note on the use of noexcept in the seeding functions below: * * None of the RNG code should ever throw any exception, with the sole exception * of MilliSleep in SeedSleep, which can (and does) support interruptions which * cause a boost::thread_interrupted to be thrown. * * This means that SeedSleep, and all functions that invoke it are throwing. * However, we know that GetRandBytes() and GetStrongRandBytes() never trigger * this sleeping logic, so they are noexcept. The same is true for all the * GetRand*() functions that use GetRandBytes() indirectly. * * TODO: After moving away from interruptible boost-based thread management, * everything can become noexcept here. */ static void SeedTimestamp(CSHA512& hasher) noexcept { int64_t perfcounter = GetPerformanceCounter(); hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter)); } static void SeedFast(CSHA512& hasher) noexcept { unsigned char buffer[32]; // Stack pointer to indirectly commit to thread/callstack const unsigned char* ptr = buffer; hasher.Write((const unsigned char*)&ptr, sizeof(ptr)); // Hardware randomness is very fast when available; use it always. bool have_hw_rand = GetHardwareRand(buffer); if (have_hw_rand) hasher.Write(buffer, sizeof(buffer)); // High-precision timestamp SeedTimestamp(hasher); } static void SeedSlow(CSHA512& hasher) noexcept { unsigned char buffer[32]; // Everything that the 'fast' seeder includes SeedFast(hasher); // OS randomness GetOSRand(buffer); hasher.Write(buffer, sizeof(buffer)); // OpenSSL RNG (for now) RAND_bytes(buffer, sizeof(buffer)); hasher.Write(buffer, sizeof(buffer)); // High-precision timestamp. // // Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a // benchmark of all the entropy gathering sources in this function). SeedTimestamp(hasher); } static void SeedSleep(CSHA512& hasher) { // Everything that the 'fast' seeder includes SeedFast(hasher); // High-precision timestamp SeedTimestamp(hasher); // Sleep for 1ms MilliSleep(1); // High-precision timestamp after sleeping (as we commit to both the time before and after, this measures the delay) SeedTimestamp(hasher); // Windows performance monitor data (once every 10 minutes) RandAddSeedPerfmon(hasher); } static void SeedStartup(CSHA512& hasher) noexcept { #ifdef WIN32 RAND_screen(); #endif // Everything that the 'slow' seeder includes. SeedSlow(hasher); // Windows performance monitor data. RandAddSeedPerfmon(hasher); } enum class RNGLevel { FAST, //!< Automatically called by GetRandBytes SLOW, //!< Automatically called by GetStrongRandBytes SLEEP, //!< Called by RandAddSeedSleep() }; static void ProcRand(unsigned char* out, int num, RNGLevel level) { // Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available). RNGState& rng = GetRNGState(); assert(num <= 32); CSHA512 hasher; switch (level) { case RNGLevel::FAST: SeedFast(hasher); break; case RNGLevel::SLOW: SeedSlow(hasher); break; case RNGLevel::SLEEP: SeedSleep(hasher); break; } // Combine with and update state if (!rng.MixExtract(out, num, std::move(hasher), false)) { // On the first invocation, also seed with SeedStartup(). CSHA512 startup_hasher; SeedStartup(startup_hasher); rng.MixExtract(out, num, std::move(startup_hasher), true); } // For anything but the 'fast' level, feed the resulting RNG output (after an additional hashing step) back into OpenSSL. if (level != RNGLevel::FAST) { unsigned char buf[64]; CSHA512().Write(out, num).Finalize(buf); RAND_add(buf, sizeof(buf), num); memory_cleanse(buf, 64); } } void GetRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::FAST); } void GetStrongRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::SLOW); } void RandAddSeedSleep() { ProcRand(nullptr, 0, RNGLevel::SLEEP); } uint64_t GetRand(uint64_t nMax) noexcept { return FastRandomContext().randrange(nMax); } int GetRandInt(int nMax) noexcept { return GetRand(nMax); } uint256 GetRandHash() noexcept { uint256 hash; GetRandBytes((unsigned char*)&hash, sizeof(hash)); return hash; } void FastRandomContext::RandomSeed() { uint256 seed = GetRandHash(); rng.SetKey(seed.begin(), 32); requires_seed = false; } uint256 FastRandomContext::rand256() noexcept { if (bytebuf_size < 32) { FillByteBuffer(); } uint256 ret; memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32); bytebuf_size -= 32; return ret; } std::vector FastRandomContext::randbytes(size_t len) { if (requires_seed) RandomSeed(); std::vector ret(len); if (len > 0) { rng.Output(&ret[0], len); } return ret; } FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bytebuf_size(0), bitbuf_size(0) { rng.SetKey(seed.begin(), 32); } bool Random_SanityCheck() { uint64_t start = GetPerformanceCounter(); /* This does not measure the quality of randomness, but it does test that * OSRandom() overwrites all 32 bytes of the output given a maximum * number of tries. */ static const ssize_t MAX_TRIES = 1024; uint8_t data[NUM_OS_RANDOM_BYTES]; bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */ int num_overwritten; int tries = 0; /* Loop until all bytes have been overwritten at least once, or max number tries reached */ do { memset(data, 0, NUM_OS_RANDOM_BYTES); GetOSRand(data); for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { overwritten[x] |= (data[x] != 0); } num_overwritten = 0; for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { if (overwritten[x]) { num_overwritten += 1; } } tries += 1; } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES); if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */ // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep. std::this_thread::sleep_for(std::chrono::milliseconds(1)); uint64_t stop = GetPerformanceCounter(); if (stop == start) return false; // We called GetPerformanceCounter. Use it as entropy. CSHA512 to_add; to_add.Write((const unsigned char*)&start, sizeof(start)); to_add.Write((const unsigned char*)&stop, sizeof(stop)); GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false); return true; } FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0) { if (!fDeterministic) { return; } uint256 seed; rng.SetKey(seed.begin(), 32); } FastRandomContext& FastRandomContext::operator=(FastRandomContext&& from) noexcept { requires_seed = from.requires_seed; rng = from.rng; std::copy(std::begin(from.bytebuf), std::end(from.bytebuf), std::begin(bytebuf)); bytebuf_size = from.bytebuf_size; bitbuf = from.bitbuf; bitbuf_size = from.bitbuf_size; from.requires_seed = true; from.bytebuf_size = 0; from.bitbuf_size = 0; return *this; } void RandomInit() { // Invoke RNG code to trigger initialization (if not already performed) ProcRand(nullptr, 0, RNGLevel::FAST); ReportHardwareRand(); }