// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "random.h" #include "crypto/sha512.h" #include "support/cleanse.h" #ifdef WIN32 #include "compat.h" // for Windows API #include #endif #include "util.h" // for LogPrint() #include "utilstrencodings.h" // for GetTime() #include #include #include #include #ifndef WIN32 #include #endif #ifdef HAVE_SYS_GETRANDOM #include #include #endif #if defined(HAVE_GETENTROPY) || (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)) #include #endif #if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) #include #endif #ifdef HAVE_SYSCTL_ARND #include #endif #include #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) #include #endif #include #include static void RandFailure() { LogPrintf("Failed to read randomness, aborting\n"); abort(); } static inline int64_t GetPerformanceCounter() { // Read the hardware time stamp counter when available. // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information. #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) return __rdtsc(); #elif !defined(_MSC_VER) && defined(__i386__) uint64_t r = 0; __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair. return r; #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__)) uint64_t r1 = 0, r2 = 0; __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx. return (r2 << 32) | r1; #else // Fall back to using C++11 clock (usually microsecond or nanosecond precision) return std::chrono::high_resolution_clock::now().time_since_epoch().count(); #endif } #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) static std::atomic hwrand_initialized{false}; static bool rdrand_supported = false; static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000; static void RDRandInit() { uint32_t eax, ebx, ecx, edx; if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) { LogPrintf("Using RdRand as an additional entropy source\n"); rdrand_supported = true; } hwrand_initialized.store(true); } #else static void RDRandInit() {} #endif static bool GetHWRand(unsigned char* ent32) { #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) assert(hwrand_initialized.load(std::memory_order_relaxed)); if (rdrand_supported) { uint8_t ok; // Not all assemblers support the rdrand instruction, write it in hex. #ifdef __i386__ for (int iter = 0; iter < 4; ++iter) { uint32_t r1, r2; __asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax ".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx "setc %2" : "=a"(r1), "=d"(r2), "=q"(ok) :: "cc"); if (!ok) return false; WriteLE32(ent32 + 8 * iter, r1); WriteLE32(ent32 + 8 * iter + 4, r2); } #else uint64_t r1, r2, r3, r4; __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax "0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx "0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx "0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx "setc %4" : "=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc"); if (!ok) return false; WriteLE64(ent32, r1); WriteLE64(ent32 + 8, r2); WriteLE64(ent32 + 16, r3); WriteLE64(ent32 + 24, r4); #endif return true; } #endif return false; } void RandAddSeed() { // Seed with CPU performance counter int64_t nCounter = GetPerformanceCounter(); RAND_add(&nCounter, sizeof(nCounter), 1.5); memory_cleanse((void*)&nCounter, sizeof(nCounter)); } static void RandAddSeedPerfmon() { RandAddSeed(); #ifdef WIN32 // Don't need this on Linux, OpenSSL automatically uses /dev/urandom // Seed with the entire set of perfmon data // This can take up to 2 seconds, so only do it every 10 minutes static int64_t nLastPerfmon; if (GetTime() < nLastPerfmon + 10 * 60) return; nLastPerfmon = GetTime(); std::vector vData(250000, 0); long ret = 0; unsigned long nSize = 0; const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data while (true) { nSize = vData.size(); ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", nullptr, nullptr, vData.data(), &nSize); if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize) break; vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially } RegCloseKey(HKEY_PERFORMANCE_DATA); if (ret == ERROR_SUCCESS) { RAND_add(vData.data(), nSize, nSize / 100.0); memory_cleanse(vData.data(), nSize); LogPrint(BCLog::RAND, "%s: %lu bytes\n", __func__, nSize); } else { static bool warned = false; // Warn only once if (!warned) { LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret); warned = true; } } #endif } #ifndef WIN32 /** Fallback: get 32 bytes of system entropy from /dev/urandom. The most * compatible way to get cryptographic randomness on UNIX-ish platforms. */ void GetDevURandom(unsigned char *ent32) { int f = open("/dev/urandom", O_RDONLY); if (f == -1) { RandFailure(); } int have = 0; do { ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have); if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) { close(f); RandFailure(); } have += n; } while (have < NUM_OS_RANDOM_BYTES); close(f); } #endif /** Get 32 bytes of system entropy. */ void GetOSRand(unsigned char *ent32) { #if defined(WIN32) HCRYPTPROV hProvider; int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); if (!ret) { RandFailure(); } ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32); if (!ret) { RandFailure(); } CryptReleaseContext(hProvider, 0); #elif defined(HAVE_SYS_GETRANDOM) /* Linux. From the getrandom(2) man page: * "If the urandom source has been initialized, reads of up to 256 bytes * will always return as many bytes as requested and will not be * interrupted by signals." */ int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0); if (rv != NUM_OS_RANDOM_BYTES) { if (rv < 0 && errno == ENOSYS) { /* Fallback for kernel <3.17: the return value will be -1 and errno * ENOSYS if the syscall is not available, in that case fall back * to /dev/urandom. */ GetDevURandom(ent32); } else { RandFailure(); } } #elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__) /* On OpenBSD this can return up to 256 bytes of entropy, will return an * error if more are requested. * The call cannot return less than the requested number of bytes. getentropy is explicitly limited to openbsd here, as a similar (but not the same) function may exist on other platforms via glibc. */ if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } #elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) // We need a fallback for OSX < 10.12 if (&getentropy != nullptr) { if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } } else { GetDevURandom(ent32); } #elif defined(HAVE_SYSCTL_ARND) /* FreeBSD and similar. It is possible for the call to return less * bytes than requested, so need to read in a loop. */ static const int name[2] = {CTL_KERN, KERN_ARND}; int have = 0; do { size_t len = NUM_OS_RANDOM_BYTES - have; if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, nullptr, 0) != 0) { RandFailure(); } have += len; } while (have < NUM_OS_RANDOM_BYTES); #else /* Fall back to /dev/urandom if there is no specific method implemented to * get system entropy for this OS. */ GetDevURandom(ent32); #endif } void GetRandBytes(unsigned char* buf, int num) { if (RAND_bytes(buf, num) != 1) { RandFailure(); } } static void AddDataToRng(void* data, size_t len); void RandAddSeedSleep() { int64_t nPerfCounter1 = GetPerformanceCounter(); std::this_thread::sleep_for(std::chrono::milliseconds(1)); int64_t nPerfCounter2 = GetPerformanceCounter(); // Combine with and update state AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1)); AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2)); memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1)); memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2)); } static std::mutex cs_rng_state; static unsigned char rng_state[32] = {0}; static uint64_t rng_counter = 0; static void AddDataToRng(void* data, size_t len) { CSHA512 hasher; hasher.Write((const unsigned char*)&len, sizeof(len)); hasher.Write((const unsigned char*)data, len); unsigned char buf[64]; { std::unique_lock lock(cs_rng_state); hasher.Write(rng_state, sizeof(rng_state)); hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter)); ++rng_counter; hasher.Finalize(buf); memcpy(rng_state, buf + 32, 32); } memory_cleanse(buf, 64); } void GetStrongRandBytes(unsigned char* out, int num) { assert(num <= 32); CSHA512 hasher; unsigned char buf[64]; // First source: OpenSSL's RNG RandAddSeedPerfmon(); GetRandBytes(buf, 32); hasher.Write(buf, 32); // Second source: OS RNG GetOSRand(buf); hasher.Write(buf, 32); // Third source: HW RNG, if available. if (GetHWRand(buf)) { hasher.Write(buf, 32); } // Combine with and update state { std::unique_lock lock(cs_rng_state); hasher.Write(rng_state, sizeof(rng_state)); hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter)); ++rng_counter; hasher.Finalize(buf); memcpy(rng_state, buf + 32, 32); } // Produce output memcpy(out, buf, num); memory_cleanse(buf, 64); } uint64_t GetRand(uint64_t nMax) { if (nMax == 0) return 0; // The range of the random source must be a multiple of the modulus // to give every possible output value an equal possibility uint64_t nRange = (std::numeric_limits::max() / nMax) * nMax; uint64_t nRand = 0; do { GetRandBytes((unsigned char*)&nRand, sizeof(nRand)); } while (nRand >= nRange); return (nRand % nMax); } int GetRandInt(int nMax) { return GetRand(nMax); } uint256 GetRandHash() { uint256 hash; GetRandBytes((unsigned char*)&hash, sizeof(hash)); return hash; } void FastRandomContext::RandomSeed() { uint256 seed = GetRandHash(); rng.SetKey(seed.begin(), 32); requires_seed = false; } uint256 FastRandomContext::rand256() { if (bytebuf_size < 32) { FillByteBuffer(); } uint256 ret; memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32); bytebuf_size -= 32; return ret; } std::vector FastRandomContext::randbytes(size_t len) { std::vector ret(len); if (len > 0) { rng.Output(&ret[0], len); } return ret; } FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0) { rng.SetKey(seed.begin(), 32); } bool Random_SanityCheck() { uint64_t start = GetPerformanceCounter(); /* This does not measure the quality of randomness, but it does test that * OSRandom() overwrites all 32 bytes of the output given a maximum * number of tries. */ static const ssize_t MAX_TRIES = 1024; uint8_t data[NUM_OS_RANDOM_BYTES]; bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */ int num_overwritten; int tries = 0; /* Loop until all bytes have been overwritten at least once, or max number tries reached */ do { memset(data, 0, NUM_OS_RANDOM_BYTES); GetOSRand(data); for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { overwritten[x] |= (data[x] != 0); } num_overwritten = 0; for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { if (overwritten[x]) { num_overwritten += 1; } } tries += 1; } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES); if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */ // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep. std::this_thread::sleep_for(std::chrono::milliseconds(1)); uint64_t stop = GetPerformanceCounter(); if (stop == start) return false; // We called GetPerformanceCounter. Use it as entropy. RAND_add((const unsigned char*)&start, sizeof(start), 1); RAND_add((const unsigned char*)&stop, sizeof(stop), 1); return true; } FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0) { if (!fDeterministic) { return; } uint256 seed; rng.SetKey(seed.begin(), 32); } void RandomInit() { RDRandInit(); }